

Hydraulic Rotary Actuators

Catalog HY03-1800/US

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

The Parker 3-Year Extended Warranty

Parker Hannifin Corporation will extend its standard limited warranty on ALL Hydraulics Group components to thirty-six (36) months if they are protected by properly installed and maintained Parker hydraulic filters. Components covered by this warranty include all cylinders, valves, and hydraulic components manufactured by Parker in any of our global facilities. This warranty covers our components, anywhere in the world you may ship your equipment.

Parker's obligation under this warranty is limited to the replacement or repair of any failed components. The buyer understands that the seller will not be liable for any other costs or damages.

The buyers of quality Parker components and filters benefit by having **ONE** source for all hydraulic needs: **Parker**.

Lee C. Banks
President

Hydraulics Group

Parker's Extensive Hydraulic Product Line

Introduction

- Product Overview
- · Rack & Pinion Selection Guide
- · Application Examples

LTR Series

Light Duty Rack and Pinion

HTR Series

Medium Duty Rack and Pinion

M Series

Mill Duty Rack and Pinion

Rack

HRN/HRNC Series

Vane Rotary Actuators

Vane Actuators

Tork-Mor Series

Heavy Duty Vane Style Rotary Actuators

· Solid State Sensors Reed Switches

· Proximity Sensors Feedback Packages

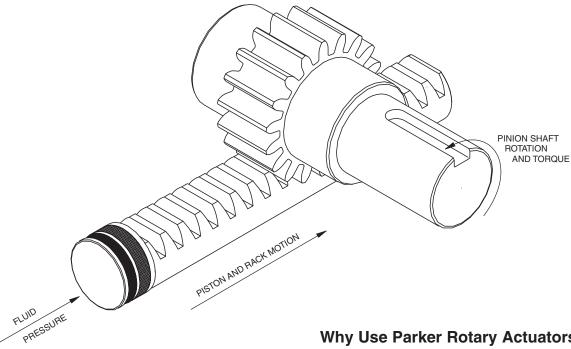
Sensors & Feedback

Engineering Reference and Equations

Service Bulletins

- · Installation Instructions
- Maintenance Instructions
- Service Parts

1800_intro.pmd, M&A


Actuator Overview

Parker . . . Leading the Industry

Parker leads the industry in development of new and innovative features to make rack and pinion rotary actuators more reliable, efficient and safe. With a firm commitment to product quality and design research, Parker rotary actuators are continually being improved so that you can enjoy benefits such as long service life and increased productivity.

What Is a Rack & Pinion **Rotary Actuator?**

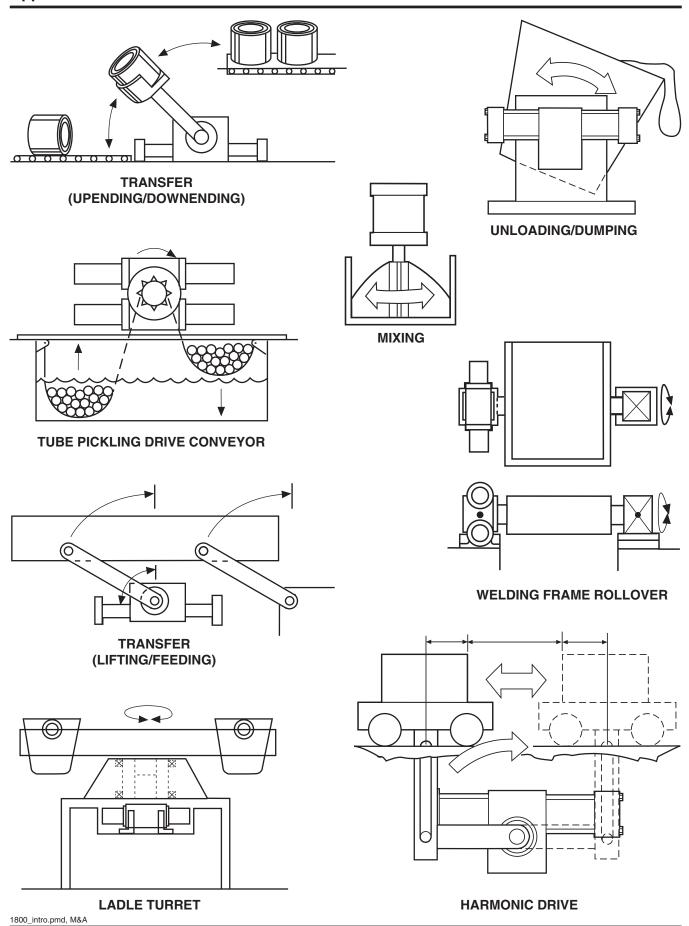
Parker rotary actuators convert fluid power into rotary motion for a wide variety of industrial applications. Pressurized fluid is applied to a circular piston inside a cylinder which pushes a rack across the pinion gear. This action turns the shaft, generating rotary motion. This motion is transferred through the shaft to the machinery for applications such as upending, turning, roll-over, tilting, indexing, transferring, mixing, valve operating, tensioning and clamping.

Where Can Parker Rack & Pinion **Rotary Actuators Be Used?**

- Material Handling
- Machine Tool
- **Primary Metals**
- Rubber and Plastics Machinery
- Mobile Equipment
- Robotics
- Packaging

- Valve Actuation
- Multi-Process Industry
- Cranes and Hoists
- Mining and Oil Field Equipment
- Military
- Commercial Marine

Why Use Parker Rotary Actuators?


- Provides uniform torque in both directions.
- Simple design.
- Wide range of sizes.
- High torque output in a small package size.
- More efficient operation and longer time between servicing.
- Performs under the most adverse ambient conditions.
- No external linkage needed for rotary motion.
- Good load holding capability with no drift.
- Optional cushions can stop inertial loads*.
- Rotation can be specified to fit exact application needs.
- Will support radial and thrust loads.

1800 intro.pmd, M&A

^{*} Within actuator limits.

Applications

Selection Guide

A rack and pinion rotary actuator consists of a housing with bearings, a rack and pinion gear rotary group and hydraulic cylinder parts. The cylinder pistons drive the rack gear across the pinion gear to generate torque at some rotational velocity. Gear tooth life is well understood and with the help of the AGMA 2001-B88 calculation model, we can make gear train life estimates. The following tables suggest a relationship between a desired total torque value and a desired durability cycle life.

Durability Cycle Life

A gear tooth can break either when overloaded or by load induced metal fatigue. The tooth overload failure mode is obvious. Parker and our competitors have historically used the "bending stress" criteria to establish torque ratings. Tooth bending capability remains a useful criteria. Parker proposes to broaden the selection criteria by publishing torque versus durability life guidelines and suggestions.

Parker Automation Pneumatic Division has generated the following tables as an actuator selection aid. We suggest actuator selection begin with the consideration of both torque and desired durability life. Use these tables to discover possible candidate LTR, HTR and Mill type actuators for consideration.

How to Use

These suggestions are made not respective of the available operational pressure. Select the desired total torque requirements on the left hand column. Then select the desired durability cycle life column. In that square, find an actuator suggestion that should meet both the gear train durability and cycle life criteria. An actuator with greater capabilities than the one sugested should satisfy the same criteria. For example, if the block suggests an LTR151 for the given torque and durability life, then an LTR152 is also suitable as would be an HTR1.8 or any actuator larger than the LTR151.

Caution: These charts are intended as a guide only. Refer to actual product data in the catalog before specifying an actuator. Factors such as bearing loads and shock loads may influence actuator selection. It is not feasible for any catalog to note, describe and anticipate all product limitations. It is incumbent upon the OEM or user to qualify any particular product for each and every application.

NOTE: Consult factory for gear train life information if:

LTR system pressure exceeds 750 psig HTR system pressure exceeds 1750 psig M system pressure exceeds 2250 psig

Completely fill out the "Application Fax" and submit the form prior to contact with the factory.

Torque vs Durability Cycle Life*

Torques from 200 to 1100 lb-in

Torque	Level	10 thousand Cycles	100 thousand Cycles	1 million Cycles	10 million Cycles
lb-in	Nm	Nominal Life	Nominal Life	Nominal Life	Nominal Life
1100	124	LTR151	HTR1.8	HTR3.7	LTR152
1000	113	LTR151	HTR1.8	HTR1.8	LTR152
900	102	LTR151 or HTR.9	LTR151	HTR1.8	HTR3.7
800	90	HTR.9	LTR151	HTR1.8	HTR1.8
700	79	LTR102 or HTR.9	LTR151	LTR151	HTR1.8
600	68	LTR102 or HTR.9	LTR102 or HTR.9	LTR151	LTR151
500	57	LTR102 or HTR.9	LTR102 or HTR.9	LTR102 or HTR.9	LTR151
400	45	LTR101	LTR102 or HTR.9	LTR102 or HTR.9	LTR102 or HTR.9
300	34	LTR101	LTR101	LTR102 or HTR.9	LTR102 or HTR.9
200	23	LTR101	LTR101	LTR101	LTR101

^{*}Durability life estimates based on AGMA 2001-B88 gear life model for pitting resistance.

1800 intro.pmd, M&A

Selection Guide

Torque vs Durability Cycle Life* Torques from 2000 to 10000 lb-in

Torqu	e Level	10 thousand Cycles	100 thousand Cycles	1 million Cycles	10 million Cycles
lb-in	Nm	Nominal Life	Nominal Life	Nominal Life	Nominal Life
10000	1130	HTR10 or LTR321	LTR322	HTR30/45	HTR30/45
9000	1017	HTR10	HTR15/22	HTR30/45	HTR30/45
8000	904	HTR10 or LTR252	HTR15/22	LTR322	HTR30/45
7000	791	HTR7.5	HTR10	HTR15/22	HTR30/45
6000	678	LTR321/252	HTR10	HTR15/22	HTR30/45
5000	565	HTR5 or LTR202/252	LTR202/321	HTR10	HTR15/22
4000	452	LTR202/321	LTR202/321	LTR202/321	HTR10
3000	339	HTR3.7 or LTR251	HTR5	LTR202/321	LTR321
2000	226	HTR1.8 or LTR152	HTR1.8/3.7 or LTR152	LTR101/251/152 or HTR5	LTR321/HTR5/HTR7.5

Torque vs Durability Cycle Life*

Torques from 15000 to 100000 lb-in

Torque	Level	10 thousand Cycles	100 thousand Cycles	1 million Cycles	10 million Cycles
lb-in	Nm	Nominal Life	Nominal Life	Nominal Life	Nominal Life
100000	11300	150M or HTR150	150M	150M	150M or HTR300
90000	10170	150M or HTR150	150M	150M	150M or HTR300
80000	9040	150M or HTR150	150M	150M	150M or HTR300
70000	7910	75M or HTR75	75M	150M	150M or HTR300
60000	6780	75M or HTR75	75M or HTR150	75M or HTR150	150M or HTR300
50000	5650	75M or HTR75	75M or HTR150	75M or HTR150	75M or HTR150
40000	4520	75M or HTR75	75M or HTR150	75M or HTR150	75M or HTR150
30000	3390	HTR30	HTR75	75M or HTR150	75M or HTR150
20000	2260	HTR30/45 or LTR322	HTR30/45	HTR75	HTR75
15000	1695	HTR15/22 or LTR322	HTR30/45	HTR30/45	HTR30/45

Torque vs Durability Cycle Life*

Torques from 100000 to 600000 lb-in

Torque	Level	10 thousand Cycles	100 thousand Cycles	1 million Cycles	10 million Cycles
lb-in	Nm	Nominal Life	Nominal Life	Nominal Life	Nominal Life
600000	67764	600M or HTR600			
500000	56470	600M or HTR600	600M		
400000	45176	600M or HTR600	600M	600M	
300000	33882	300M or HTR600	600M or HTR600	600M	600M
200000	22588	300M or HTR300	300M	600M or HTR600	600M or HTR600
100000	11300	150M or HTR150	150M or HTR300	150M or HTR300	150M or HTR300

^{*}Durability life estimates based on AGMA 2001-B88 gear life model for pitting resistance. 1800_intro.pmd, M&A

Product Highlights

LTR Series

The LTR Series will provide superior performance in low pressure hydraulic applications found in packaging, material handling, machine tool and automated assembly industries.

Sealed ball bearings and floating pistons ensure low breakaway pressure and smooth operation. PolyPak piston seals and wearbands eliminate leakage and cylinder scoring. Alloy steel racks and pinions provide the strength and resilience for minimum downtime. A broad offering of options provides unmatched flexibility in design and application. These include cushions, stroke adjusters, flow controls, and position sensors, as well as application matched shaft, mounting, porting and seal variations. Three position and antibacklash units are also available.

SPECIFICATIONS

• Nominal Pressure: 1000 psi

Standard Rotations: 90°, 180°, 270°, 360°
Output Torque @ 1000 psi: 395 to 22,500 lb-in
Maximum Breakaway Pressure: 30 psi

HTR Series

When durability, performance, and reliability are required in the most demanding industrial applications, specify the HTR Series actuator. This series is designed for medium duty service found in machine tool, transfer line, material handling and other critical applications.

Through hardened alloy steel pinion and racks, supported by large capacity tapered roller bearings in a ductile iron housing, ensure long life, even with externally applied radial and thrust loads. The heavy duty Wear-Pak pistons are equipped with self-energizing deep PolyPak piston seals and a rugged wear band for long life operation. Standard NFPA cylinder construction allows for a wide variety of rotation options, complementing the broad offering of shaft and mounting styles.

SPECIFICATIONS

• Maximum Operating Pressure: Up to 3000 psi non-shock

• Standard Rotations: 90°, 180°, 360°

• Rotational Tolerance: -0° + 2°

• Output Torque @ 3000 psi: 900 to 600,000 lb-in

• Maximum Breakaway Pressure: 75 psi

M Series

Designed to meet steel mill specifications, these non tie rod rotary actuators incorporate a range of exclusive features designed to provide durability and dependability in the most arduous operating environment.

Wear band pistons on both ends and bronze bearings under the center of the alloy steel rack provide critical support and virtually eliminate scoring or galling of the cylinder tubes. Large diameter tapered roller bearings support the pinion, allowing the unit to absorb high external loads. PolyPak seals provide long life operation and, for ease of maintenance, can be changed without removing the actuator from the installation.

SPECIFICATIONS

• Maximum Operating Pressure: 3,000 psi

• Proof Pressure: 4,500 psi

• Standard Rotations: 90°, 180°, 270°, 360°

• Rotational Tolerance: -0° + 2°

• Output Torque @ 3,000 psi: 75,000 to 50,000,000 lb-in

Average Angular Backlash: 10 minutes
 Maximum Breakaway Pressure: 100 psi

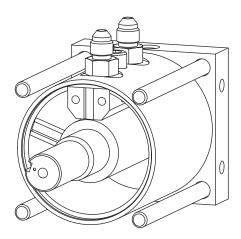
 Housing: Heavy duty ductile iron (units up to 1,000M), Steel weldments (units larger than 1,000M)

Actuator Overview

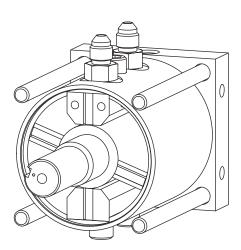
Parker . . . Leading the Industry

Parker combines many years of vane actuator experience with innovative product design to lead the industry in the development of reliable and efficient rotary actuators. When you specify Parker rotary vane actuators, you can rely on reduced maintenance costs and increased productivity.

Why Use Parker Vane Style Rotary Actuators?


- High torque output in a small package size
- Very economical for OEM applications
- Zero backlash allows precise positioning
- Provides uniform torque in both directions
- Simplicity of design
- Washdown compatible
- Performs under the most adverse ambient conditions
- Cleanroom compatible
- Guaranteed zero external leakage
- Will support radial and thrust loads
- Wide range of sizes

Where Can Parker Vane Style Rotary Actuators Be Used?


- Material Handling
- Machine Tool
- Rubber and Plastics Machinery
- Robotics
- Packaging
- Valve Actuation
- Food Processing
- Electronics Manufacturing
- Conveyors

How Do Vane Actuators Work?

Parker vane actuators provide the maximum amount of output torque from the smallest possible envelope size. They convert fluid pressure into rotary motion for a wide variety of industrial applications. Two basic styles are available. Single vane models have a maximum rotation of 280°, while the double vane units produce twice the torque output from identical envelope dimensions and have a maximum rotation of 100°.

Single Vane

Double Vane

A short cylindrical chamber encloses a vane attached to a central shaft. Pressure is applied through a stationary barrier (stator) within the body to one side of the vane. The opposite side of the vane is connected to exhaust through the stator. This pressure overcomes seal friction and produces rotation of the vane and central shaft. Due to vane actuator design, there will always be some internal bypass in these units and therefore they should not be used as a brake to support loads.

Product Highlights

HRN Series

The HRN Series incorporates a rounded vane design, which provides lower vane seal bypass. The shaft and vane are machined from high strength alloy steel as one piece. The vane seal is molded in a pre-machined groove in order to provide a one piece shaft, vane, and seal assembly for long life and reliability. The standard rear output shaft provides for an easily accessible manual override in the event that hydraulic pressure is lost.

Reference points (or keyway timing) are provided relative to the port positioning. Large, convenient, front flange with precision pilot diameter allows for concise mounting and easy integration with the customer's application.

The HRN-C Series provides an additional range of vane actuator technology. Unique cushion options are available for applications where control of high inertia loads is critical. The actuator incorporates load deceleration cushions which act over the last 20 to 25 degrees of rotation. These are field adjustable and can be selected to meet varying rotational speeds and loading.

SPECIFICATIONS

Nominal Pressure: 1000 psi
Standard Rotations: 90° to 270°

• Output Torque @ 1000 psi: 89 to 17,346 lb-in (10 to 1960 Nm)

• Minimum Operating Pressure: 145 psi

Tork-Mor Series

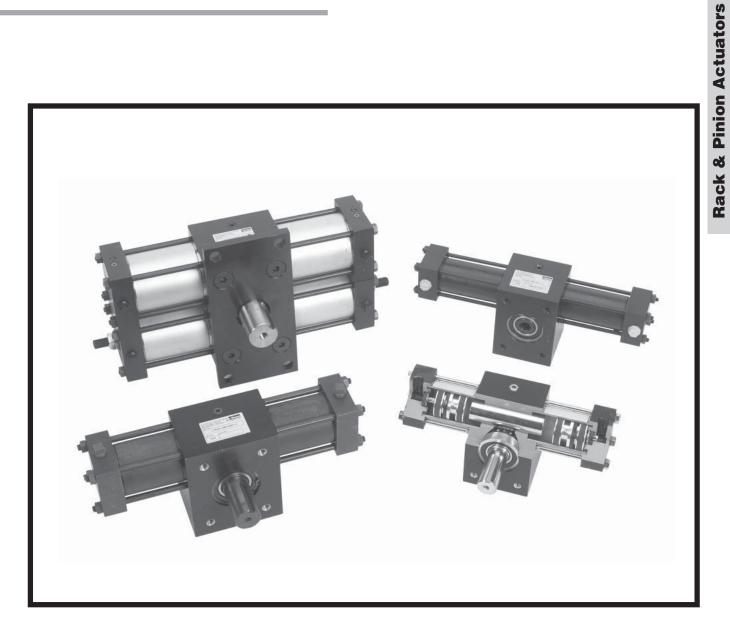
Tork-Mor Series actuators are produced in eighteen sizes generating up to 145,000 lb-in of torque at rated pressure. Capable of providing full torque instantly in either direction, they operate at pressures up to 1000 psi. The Tork-Mor Series can be mounted in any axis using a wide variety of standard or optional mountings.

Proven reliable through many years of field service, the Tork-Mor Series incorporates many quality features including precision ball bearings to provide shaft support, externally removable gland for ease of seal replacement and cylinders honed to a 10 micro inch finish to ensure long seal life.

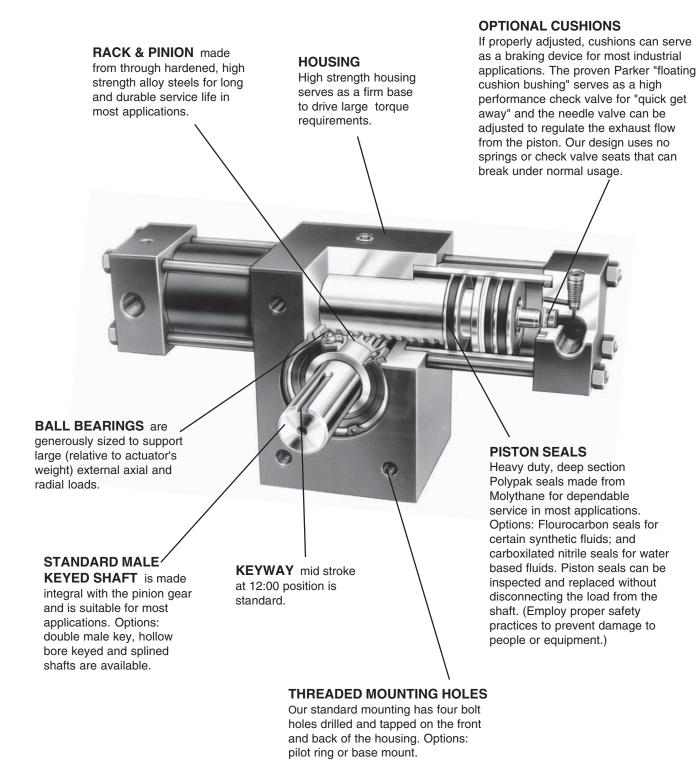
SPECIFICATIONS

• Nominal Pressure: 150-750 psi, depending on model

• Standard Rotations: S Models – 280° ± 1°; DS Models – 100° ± 1°

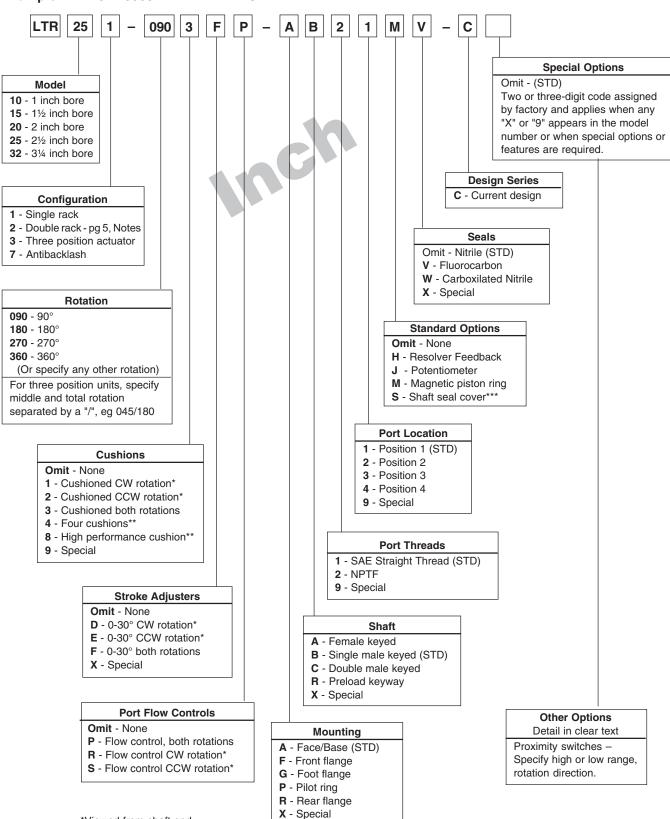

Output Torque @ 500 psi: 800 to 142,000 lb-in
 Maximum Allowable Drain Pressure: 50 psi
 Minimum Operating Pressure: 25 psi

LTR Series


Light Duty Hydraulic Rack & Pinion **Rotary Actuators**

Contents

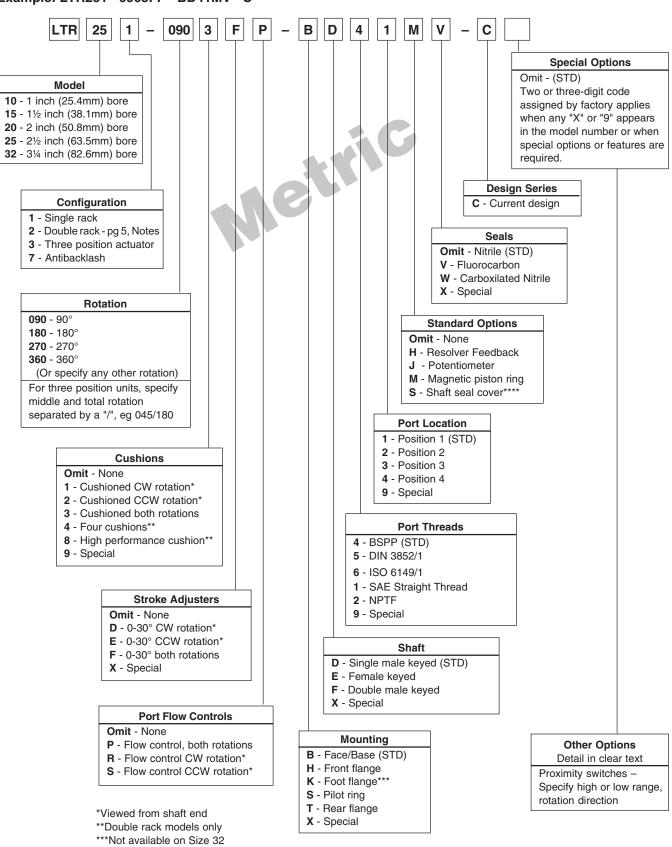
-eatures	2	Options (cont)	
		Cushions	13
Specifications	5	Stroke Adjusters	14
		Port Flow Controls	
Dimensional Data	9	Mounting	15
Options		Shaft	
Three-Position Actuator	10	Magnetic Piston	17
Antibacklash Actuator	11	Shaft Seal Cover	17
Port Threads, Port Location	12	Seals, Feedback	18
		Proximity Sensors	19



Model Code & Ordering Information

Example: LTR251 - 0903FP - AB21MV - C

*Viewed from shaft end


**Double rack models only

***For use with standard male shafts only

Model Code and Ordering Information

Example: LTR251 - 0903FP - BD41MV - C

1800 LTR.pmd, M&A

****For use with male shafts only

LTR Series

The LTR series actuator is suitable for low pressure hydraulic applications. The LTR Series actuator combines an alloy steel gear set with a high strength aluminum housing and Parker 3L or 2A Series cylinder components into a machine suitable for years of trouble free service. The actuator maximizes volumetric efficiency by using self-energizing PolyPak seals. Mechanical efficiency is maximized by using antifriction bearings and Wear-pak® piston technology.

The LTR actuator has a variety of options such as:

- · Hydraulic cushions to minimize noise, vibration shock and assist deceleration control
- · Reed, Hall Effect or proximity switches for position sensing
- End-of-rotation stroke adjusters for load position control and accurate rotation adjustment
- Built-in meter out flow control valves with reverse flow check valves provide a neat package
- · Three position option can be used with many special machine and material handling applications

SPECIFICATIONS

■ Standard rotations: 90°, 180°, 270°, 360°, 450° Maximum breakaway pressure: 30 psig (2 Bar)

Mounting orientation: unrestricted

■ Operating temperature range: Nitrile seals -40 to 180° F (-40 to 82°C)

Fluorocarbon seals -20 to 250°F (-29 to 121°C)

■ Standard timing: Keyway in 12:00 position at midstroke ■ Recommended filtration: ISO class 17/14 or better

■ Nominal pressure: 1000 psig (68 Bar) (3L cylinder pressure ratings apply)

Single Rack	Double Rack ²			etical Ou s Input I	•	. /		Gear Train Pitting Life 1 million	Estimate	Displacement per degree of rotation	Maximum angular backlash	Maximum rotational tolerance
		100 (7)	250 (17)	500 (34)	750 (52)	1000 (69)	1500 (103)	lbf-inch ³	PSID ⁴	in³/deg.	Minutes	Degrees
101		39	98	197	295	395	592	270	800	0.007	60	-0/+5
	102	79	197	395	592	ı	_	580	800	0.014	60	-0/+5
151		118	294	590	885	1180	1770	665	650	0.021	45	-0/+4
	152	236	590	1180	1770	2360	3530	1400	650	0.042	45	-0/+4
201		282	705	1410	2115	2830	4240	1790	750	0.049	35	-0/+3
251		430	1074	2148	3222	4295	6443	2100	550	0.075	35	-0/+3
	202	565	1410	2820	4230	5650	8470	3790	750	0.099	35	-0/+3
	252	859	2148	4295	6442	8590	12885	4250	550	0.150	35	-0/+3
321		1141	2852	5703	8554	11407	_	3880	400	0.199	25	-0/+2
	322	2281	5703	11407	17110	22813	_	6160	300	0.398	25	-0/+2

NOTES:

- 1. As a precaution, consult factory whenever using the LTR with port flow controls, cushions, or stroke adjusters on double rack units. These options may require the units to be pressure derated.
- 2. Double rack actuators should specify type 4 or 8 cushions and four stroke adjusters and four flow controls (one per end cap) to balance the gear tooth forces on the pinion. Contact the factory for ordering code information. Type 1, 2, or 3 cushions, type A, B, or C stroke adjusters and type P, R, and S port flow controls may cause a destructive bending couple upon the pinion gear under some operating conditions.
- 3. Durability rated output torque.
- 4. Pressure differential between the inlet and outlet ports (non-shock).
- 5. Reduce LTR Series pressure rating by 50% when specifying a magnetic piston with aluminum cylinder tubes, option "M" except on LTR101 and 102 models.

Bearing Load Capacities & Gear Train Available

Model	Bea	aring Load	Capacition	es*	Dista	ance	Available Stopping Work per Endcap / Cushion**						
	Rad	lial	Thr	ust	Between	Bearings	Strength	Criteria	Durability Criteria				
	lb	kN	lb kN		inch	mm	in-lb	Nm	in-lb	Nm			
10	100	0.4	50	0.2	1.40	35	300	34	141	16			
15	250	1.1	125	0.5	2.15	54	900	102	348	39			
20	500	2.2	250	1.1	2.15	54	1500	169	936	106			
25	750	3.3	375	1.6	2.50	63	2250	254	1098	124			
32	1000	4.4	500 2.2		3.75	95	5000 565		2029	229			

^{*} Bearing capacities only.

Cushion Deceleration Control

The cushion causes the resisting torque that can be used to decelerate a rotational load. Please note the cushion has to provide enough resistance to control: drive torque caused by the hydraulic system pressure; plus the torque caused by gravity pulling on the rotational load; and the kinetic energy associated with the motion of the inertia load. Since the actuator's cushion has to be able to control the sum of all three torque factors, we suggest including cushion capacity as one of the actuator selection criteria.

It is strongly suggested that proportional valves be used instead of cushions to control (decelerate) high inertial loads. This provides the ability to reduce inlet pressure while generating deceleration pressure. It also allows for longer ramp times, thus increasing deceleration stroke.

SUPPLEMENTAL INFORMATION KINETIC ENERGY BASIC FORMULA

$$KE = 1/2 J_m \omega^2$$

$$\omega = 0.0175 \text{ x } \frac{2\Theta_{\text{A}} + \Theta_{\text{C}} + 2\Theta_{\text{D}}}{\text{Rotation Time (sec.)}}$$

where:

KE = Kinetic Energy (in-lb)

J_m = Rotational Mass Moment of Inertia (in-lb-sec²) See Page 8 for formulas.

ω = Peak Velocity (rad/sec)
 (Assuming trapezoidal velocity profile)

 Θ_A = Acceleration Angle (deg)

 Θ_{C} = Constant Velocity Angle (deg)

 Θ_D = Deceleration Angle (deg)

^{**} Check total stopping torque ratings to determine if actuator will stop load. Double rack actuators should use Type 4 or Type 8 cushion option for table data to remain correct.

Kinetic Energy Capacity

The energy values below assume drive pressure is maintained through cushion stroke.

Single Rack Units with Single Set of Cushions (30°)

				Kinetic E	nergy Ra	ting(in-lb) of C	Cushion at	Specified Driv	e Pressui	re*			
Model		0 psi	:	250 psi		500 psi	7	750 psi	10	00 psi	1500 psi		
	Max.	Durability	Max.	Durability	Max.	Durability	Max. Durability		Max.	Durability	Max.	Durability	
LTR101	310	141	258	141	207	141	155	141	103	103	0	0	
LTR151	927	348	772	348	618	348	463	348	309	309	0	0	
LTR201	2220	936	1850	936	1480	936	1110	936	740	740	0	0	
LTR251	3373	1098	2811	1098	2248	1098	1686	1098	1124	1098	0	0	
LTR321	11945	2029	8959 2029		5973 2029		2986	2029	0	0	na	na	

Double Rack Units with Single Set of Cushions (30°)

				Kinetic E	nergy Ra	ting(in-lb) of C	ushion a	t Specified Driv	e Pressui	re*		
Model		0 psi	:	250 psi	į.	500 psi		750 psi	10	00 psi	1500 psi	
	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
LTR102	310	141	103	103	0	0	0	0	0	0	0	0
LTR152	924	348	616	348	308	308	0	0	0	0	0	0
LTR202	2217	936	1478	936	739	739	0	0	0	0	0	0
LTR252	3373	1098	2249	1098	1124	1098	0	0	0	0	0	0
LTR322	5971	2029	2986	2986 2029		0	0	0	0	0	0	0

Double Rack Units with Double Set of Cushions (30°)**

				Kinetic E	nergy Ra	ting(in-lb) of C	ushion a	t Specified Driv	e Pressur	·e*			
Model		0 psi	:	250 psi	500 psi			750 psi	10	00 psi	1500 psi		
	Max.	Durability	Max.	Durability	Max.	Durability	Max. Durability		Max.	Durability	Max.	Durability	
LTR102	310	303	206	206	103	103	0	0	0	0	0	0	
LTR152	1848	732	1540	732	1232	732	924	732	616	616	0	0	
LTR202	4434	1982	3695	1982	2956	1982	2217	1982	1478	1478	0	0	
LTR252	6745	2223	5621	2223	4496	2223	3373	2223	2248	2223	0	0	
LTR322	11943	3222	8957	8957 3222		5971 3222		2986	0 0		0	0	

- * Must deduct work (energy) done to overcome potential energy effects of load. $W_{PE} = T_{PE} \times \theta$, where θ is in radians.
- ** Extreme care must be exercised so that both cushions are adjusted equally for each direction or dangerous pressure intensification and gear train stresses could result. (Suggest high performance cushion option.)

Unit Weights

				Rotat	tion			
Model	9	0°	18	0°	27	'0°	360)°
	lb	kg	lb	kg	lb	kg	lb	kg
LTR101	21/4	1	21/2	1.1	23/4	1.2	3	1.3
LTR102	31/2	1.6	37/8	1.8	4 ¹ / ₄	1.7	45/8	2.1
LTR151	87/8	4	95/8	4.3	10 ³ /8	4.7	11 ¹ /8	5
LTR152	125/8	5.7	14 ¹ /8	6.4	15 ⁵ /8	7.1	19 ¹ / ₂	8.8
LTR201	145/8	6.6	16	7.2	17³/ ₈	7.9	18 ⁷ /8	8.6
LTR202	213/4	9.9	241/2	11.1	271/2	12.5	301/2	13.8
LTR251	225/8	10.3	243/4	11.2	271/4	12.4	293/8	13.3
LTR252	335/8	15.2	38¹/ ₈	16.8	423/4	19.4	471/8	21.4
LTR321	465/8	21.1	50 ¹ /8	22.7	53 ¹ / ₂	24.3	56 ⁷ /8	25.8
LTR322	665/8	30.2	735/8	33.4	78³/ ₈	35.5	871/8	39.5

Kinetic Energy Basic Formula

$$KE = 1/2 J_m \omega^2$$

$$\omega = 0.0175 \quad x \quad \frac{2\Theta_A + \Theta_C + 2\Theta_D}{\text{Rotation Time (Sec.)}}$$

MASS MOMENTS OF INERTIA **MODELS & FORMULAS**

where:

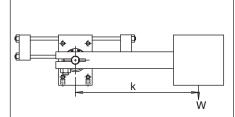
KE = Kinetic Energy (in-lb)

J_m = Rotational mass moment of inertia (in-lb-sec²) (Dependent on physical size of object and weight)

ω = Peak Velocity (rad/sec) (Assuming trapezoidal velocity profile)

 Θ_A = Acceleration Angle (deg)

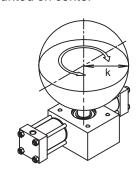
 $\Theta_{\mathbb{C}}$ = Constant Velocity Angle (deg)


 Θ_D = Deceleration Angle (deg)

W = Weight of load (lb)

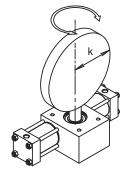
= Gravitational constant = 386.4 in/sec²

= Radius of gyration (in)


POINT LOAD

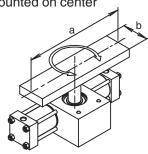
$$Jm = \frac{W}{q} x k^2$$

SOLID SPHERE -


Mounted on center

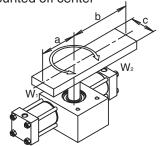
$$Jm = \frac{2}{5} x \frac{W}{g} x k^2$$

THIN DISK-


End mounted on center

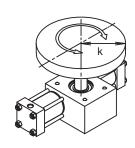
$$Jm = \frac{W}{g} \ x \ \frac{k^2}{4}$$

THIN RECTANGULAR PLATE


Mounted on center

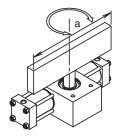
$$Jm = \frac{W}{g} x \frac{a^2 + b^2}{12}$$

THIN RECTANGULAR PLATE


Mounted off center

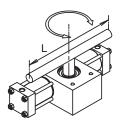
$$Jm = \frac{W_1}{g} \ x \ \frac{4a^2 + c^2}{12} \ + \ \frac{W_2}{g} \ x \ \frac{4b^2 + c^2}{12}$$

THIN DISK


Mounted on center

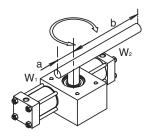
$$Jm = \frac{W}{g} x \frac{k^2}{2}$$

THIN RECTANGULAR PLATE


End mounted on center

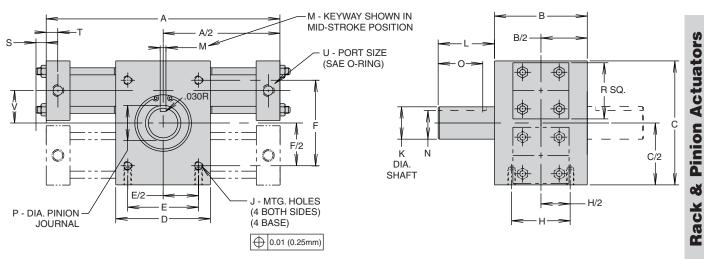
$$Jm = \frac{W}{g} \times \frac{a^2}{12}$$

SLENDER ROD


Mounted on center

$$Jm = \frac{W}{q} \times \frac{L^2}{12}$$

SLENDER ROD


Mounted off center

$$Jm = \frac{W_1}{g} \times \frac{a^2}{3} + \frac{W_2}{g} \times \frac{b^2}{3}$$

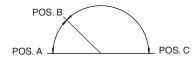
Standard Inch Unit with Face/Base Mount (A) and Male Keyed Shaft (B) Standard Metric Unit with Face/Base Mount (B) and Male Keyed Shaft (D)

Double Male Keyed Shaft (C, F) shown in phantom

Dimensions for Inch Unit (inches)

Model	Rotation	Α	В	С	D	Е	F	Н	J	К	L	М	N	0	Р	R	s	Т	U	v
10	90° 180° 360°	6 ¹¹ / ₁₆ 8 ¹ / ₄ 11 ⁷ / ₁₆	2	3	2	1.50	2.00	1.50	1/4-20 x 3/8 DP	.500 .499	7/8	.125 .127	.430 .425	5/8	.59	1½	1/4	.31	7/16-20 SAE #4	3/4
15	90° 180° 360°	9 ¹ / ₈ 11 ³ / ₁₆ 15 ³ / ₈	3	4 1/4	3	2.00	3.00	2.00	5/16-18 x 1/2 DP	.875 .874	1 ⁷ /8	.188 .190	.771 .761	1½	.98	2	⁵ /16	.44	7/16-20 SAE#4	1 ¹ / ₁₆
20	90° 180° 360°	11 ³ / ₁₆ 14 ¹ / ₁₆ 19 ¹¹ / ₁₆	3	5	4	2.50	3.50	2.00	3/8-16 x 1/2 DP	1.125 1.124	1 ⁷ /8	.250 .252	.986 .976	1½	1.18	2½	3/8	.44	9/16-18 SAE #6	11/4
25	90° 180° 360°	12 ⁹ / ₁₆ 15½ 20 ⁵ / ₈	3½	6	4	2.50	4.50	2.00	1/2-13 x 3/4 DP	1.375 1.374	21/4	.313 .315	1.201 1.191	1¾	1.38	3	3/8	.44	9/16-18 SAE #6	1½
32	90° 180° 360°	16 ⁵ /8 21 ¹ /8 29 ³ /8	5	8	5	3.00	5.00	2.50	3/4-10 x 1 DP	1.750 1.749	3½	.375 .377	1.542 1.532	3	1.77	3¾	⁷ /16	.56	3/4-16 SAE #8	1 ¹⁵ /16

Dimensions for Metric Unit (mm)


Model	Rotation	Α	В	С	D	E	F	Н	J	К	L	M P9	N	0	Р	R	S	Т	U*	V
10	90° 180° 360°	169.9 209.6 290.5	50.8	76.2	50.8	40	50	40	M6 x 1 x 10 DP	12.00 11.98	22.2	4	10.9 10.8	15	15	38.1	6.4	7.9	1/8	19.1
15	90° 180° 360°	231.8 284.2 390.5	76.2	108.0	76.2	50	80	50	M8 x 1.25 x 13 DP	22.00 21.98	47.6	6	18.5 18.4	38	25	50.8	7.9	11.2	1/4	27.0
20	90° 180° 360°	284.2 357.2 500.1	76.2	127.0	101.6	63	90	50	M10 x 1.5 x 13 DP	28.00 27.98	47.6	8	24.0 23.8	38	30	63.5	9.5	11.2	1/4	31.8
25	90° 180° 360°	319.1 393.7 523.9	88.9	152.4	101.6	63	115	50	M12 x 1.75 x 19 DP	34.00 33.98	57.2	10	29.0 28.8	44	35	76.2	9.5	11.2	1/4	38.1
32	90° 180° 360°	422.3 536.6 746.1	127.0	203.2	127.0	80	125	63	M20 x 2.5 x 25 DP	42.00 41.98	88.9	12	37.0 36.8	76	45	95.3	11.1	14.2	1/2	49.2

* BSPP/G

Three Position Actuator (3)

In addition to the standard two position actuators, three position units are also available. All standard options are also available.

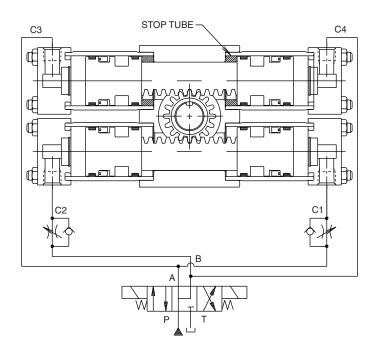
OPERATION:

A standard double rack unit is fitted with stop tubes of varying lengths on the upper rack. Pressurizing port C-2 (with ports C-1, C-3 exhausted) causes counterclockwise pinion rotation to angular position A. Alternately applying pressure to C-1 (with C-2 and C-4 exhausted) will cause clockwise rotation to angular position C. Both positions A and C are at end of stroke, thus typical end cap options such as cushions, bumpers, and stroke adjusters will operate at these positions only.

Position B is obtained by pressurizing all ports. Pressure applied to the upper floating pistons centers the rack between the stop tubes, rotating the pinion to position B. The lower rack is free floating as the forces are equal on both ends.

DIMENSIONAL DATA:

Three position actuator dimensions are identical to the standard double rack units. If stroke adjusters are specified they will be fitted to the upper rack, flow controls and cushions will be on the lower rack. Rotational tolerances are given in the chart at the right.


OUTPUT TORQUE:

Output torque of the multiple position actuator is equivalent to the torque output of the same size single rack unit. The chart to the right gives selected torque values for specified pressures.

ORDERING INFORMATION:

Three position actuators can be ordered by inserting a 3 into the "configuration" space in the model code. The desired middle and total rotation should be stated in the model code separated by a "/". The beginning position, 0°, need not be specified. For example: LTR153-045/180-AB21-C is a standard, three position actuator. Position A is 0°, position B is 45°, and position C is 180°.

CAUTION: Keep loop pressure drops low for proper operation.

	Rotation Tolerances									
Model	Total Rotation, Degrees	Between Positions, Degrees ¹	Backlash Minutes ²							
103	-0,+5	±1	50							
153	-0, +4	±1/2	40							
203	-0, +3	±1/2	30							
253	-0, +3	±1/2	30							
323	-0, +2	±1/4	15							

- 1. Measured from centers of backlash.
- Zero backlash can be achieved at positions A and C by using optional stroke adjusters.

Theoretical Output Torque, (lb-in) at Specified Pressure									
Model 100 psi 500psi 1000 psi (6.8 Bar) (34 Bar) (68 Bar)									
103	39	197	395						
153	118	590	1180						
203	282	1410	2820						
253	430	2148	4295						
323	1141	5703	11407						

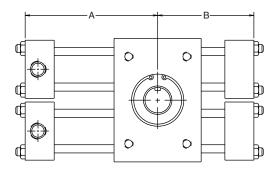
NOTE: When magnetic piston ring option "M" is ordered, all pistons will be so equipped. The pressure rating is derated by 50% with magnetic piston option.

Rack & Pinion Actuators

Antibacklash Actuator (7)

An antibacklash actuator is used to obtain precision positioning at the end of rotation. The backlash normally associated with rack and pinion actuators is eliminated by this unique configuration.

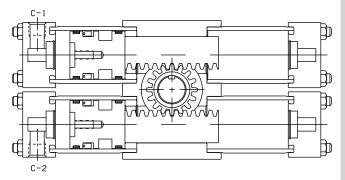
OPERATION:


A double rack unit is modified for actuation on one end only. Alternately pressurizing C-1 or C-2 causes clockwise and counter-clockwise rotation, respectively. Backlash in the rack & pinion is eliminated as the pinion is tightly "trapped" between both racks at the end of stroke, preventing any further motion.

DIMENSIONAL DATA:

Antibacklash actuators are similar in size and configuration to standard double rack units with one set of shorter cylinders. The table to the right shows dimensions for this shorter side. If cushions, stroke adjusters or port flow controls are ordered, they will be fitted to the powered rack side.

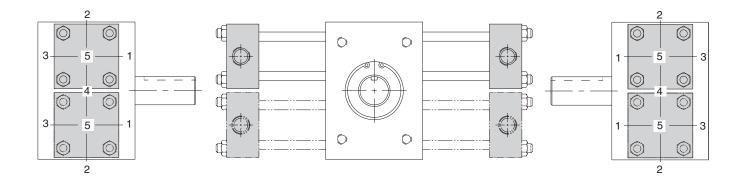
OUTPUT TORQUE:


Output torque of the antibacklash actuator is equivalent to the torque output of the same size single rack unit. The chart to the right gives selected torque values for specified pressures.

ORDERING INFORMATION:

Antibacklash actuators can be ordered by inserting a "7" into the "configuration" space in the model code. For example: LTR157-180F-AR21-C is a hydraulic antibacklash actuator with a theoretical output torque of 1000 lb-in at 1000 psi.

The optional stroke adjusters make the rotation variable between 120° and 180°. The preload key option on the shaft is also specified to eliminate any backlash in the key and flange coupling interface.

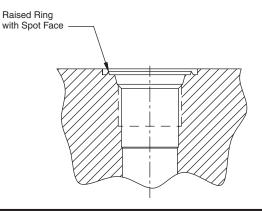


		А		В		
Model	Rotation	Inch	mm	Inch	mm	
	90	33/4	95	23/4	70	
107	180	41/8	105	33/4	95	
	360	53/4	146	5	127	
	90	49/16	116	35/16	84	
157	180	5 ⁵ /8	143	49/16	116	
	360	711/16	195	65/8	168	
	90	5 ⁵ /8	143	41/8	105	
207	180	71/16	179	55/8	143	
	360	97/8	251	81/2	216	
	90	65/16	160	4-3/8	111	
257	180	73/4	197	6-5/16	160	
	360	105/16	262	8-13/16	224	
	90	85/16	211	5- ¹³ / ₁₆	148	
327	180	109/16	268	8-5/16	211	
	360	14 ¹¹ / ₁₆	373	12- 7/16	316	

Theoretical Output Torque, (lb-in) at Specified Pressure									
Model 100 psi 500psi 1000 psi (6.8 Bar) (34 Bar) (68 Bar)									
107	39	197	395						
157	118	590	1180						
207	282	1410	2820						
257	430	2148	4295						
327	327 1141 5703 11407								

Port Location (1, 2, 3, 4, 5)

End caps can be assembled to the units with ports facing different directions as shown.

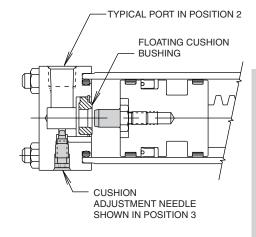

NOTE: 1. Port position 1 is standard.

- 2. Port positions 2, 3 and 4 are standard options available at no additional cost.
- 3. Port position 4 available with single rack actuators only.
- 4. For port position 5, consult factory.

Port Threads (1, 2, 4, 5, 6)

Model	Standard SAE Straight Thread (1)	NPT (2)	BSPP/G (4)	Metric DIN (5) & ISO (6)
10	7/16 - 20 (SAE 4)	1/8	1/8	M10 x 1
15	7/16 - 20 (SAE 4)	1/4	1/4	M14 x 1.5
20	9/16 - 18 (SAE 6)	1/4	1/4	M14 x 1.5
25	9/16 - 18 (SAE 6)	1/4	1/4	M14 x 1.5
32	3/4 - 16 (SAE 8)	3/8	1/2	M22 x 1.5

ISO 6149/1 Port Identification


Cushions (1, 2, 3, 4) *

The standard cushions operate over the last 30° of rotation in either CW, CCW or both directions. A floating bushing ensures no binding of the cushion spear. For severe operating conditions, four cushions should be fitted on double rack units. All cushions are fully adjustable. On double rack units with type 1, 2 or 3, cushion adjustment will be located on the upper cylinder.

STANDARD CUSHION ADJUSTER **NEEDLE LOCATIONS**

Port Position	Cushion Adjuster Position
1	2
2	3
3	2
4 **	3
5	Consult Factory

^{**}On single rack only

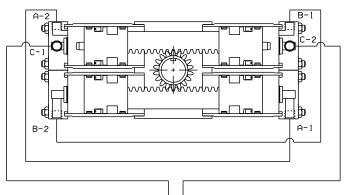
High Performance Cushion (8)

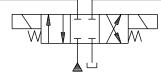
(This option available with double rack units only)

By combining the output/exhaust flow from two cylinders, then routing it across a single cushion needle, cushion performance is improved. The increased volume passing over the needle provides better control. This unique circuit eliminates two pipe or tubing tees.

OPERATION:

The work ports of a standard directional valve are plumbed to ports C-1 and C-2. Port A-1 is plumbed directly to A-2, and port B-1 is plumbed to B-2. When pressure is applied to port C-1 (clockwise shaft rotation), fluid is also directed through line A to the other rack. Exhaust flow from B-1 through B-2 is directed through the cushion bushing and cushion adjustment. When the cushion spear closes off the main passage, total flow from both end caps is directed across one cushion adjustment needle, equalizing back pressure and improving control. Alternatively, pressurizing C-2 and exhausting C-1 reverses the operation.


DIMENSIONAL INFORMATION:

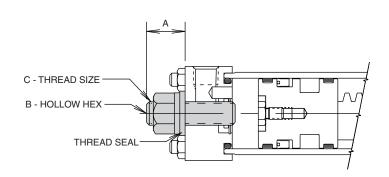

Units are identical to standard double rack and pinion units, with the exception of porting location. This chart describes the location of the ports.

Suggestion: Use Type 4 or Type 8 cushion arrangements for double rack actuators. Use Type 1, 2 or 3 cushion arrangements exclusively for single rack actuators.

GEAR SET DURABILITY

The table to the right provides energy ratings based on gear train durability when using various cushion options for the LTR Series.

Work Ports C-1, C-2 Port Position	Cushion Adjustment Position	Connection Ports A-1, A-2 & B-1, B-2 Port Position				
1	2	3				
2	3	1				
3	2	1				


	Total Energy Ca	pacity (in-lb)	Port to Port ΔP (PSID)			
Model	Code 1,2,3	Code 8	Code 1,2,3	Code 8		
LTR101	141	N/A	800	N/A		
LTR102	141	303	400	800		
LTR151	348	N/A	650	N/A		
LTR152	348	732	325	650		
LTR201	936	N/A	750	N/A		
LTR202	936	1982	375	750		
LTR251	1098	N/A	550	N/A		
LTR252	1098	2223	275	550		
LTR321	2029	N/A	400	N/A		
LTR322	2029	3222	200	400		

^{*} For gear train durability, see table below.

Stroke Adjusters (D, E, F) 30°

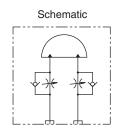
Fine control of the end of travel points of the rotary actuator can be obtained by specifying stroke adjusters. These operate by reducing the maximum travel of the actuator by up to 30° in each rotational direction. Adjustment within this range is made by the user. Several types of stroke adjuster are available. The design illustrated is suitable for applications requiring infrequent adjustment.

Stroke Adjusters and Cushions

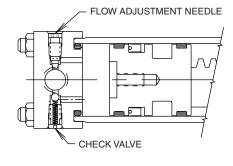
The addition of stroke adjusters requires an increase in build length. On double rack units with cushions, the cushion is fitted to the upper rack and the stroke adjuster to the lower unless otherwise specified. (Consult factory.)

The increase in build length, for both single and double rack units, is shown as dimension A in the table. Cushion performance may be affected by the addition of a stroke adjuster. Please consult the factory in critical applications.

		A (m	ax) –Increas	ed Build Le	ngth		
Model	One (1) Turn Adj.	30°Adju without C End	ushioned		stment* shioned Cap	В	C UNF
		Inch	mm	Inch	mm		
10	4.0°	.63	16	.38	10	1/8	1/4-28
15	4.2°	.88	23	1.13	29	1/4	1/2-20
20	3.1°	1.13	29	1.13	29	1/4	1/2-20
25	3.3°	1.13	29	1.13	29	1/4	1/2-20
32	2.6°	1.50 38		2.13	54	3/8	3/4-16


^{*} Standard cushions operate over the last 30° of standard rotation. Stroke adjuster will decrease the effective cushion length by the amount of inward adjustment.

CAUTION: Due to end of stroke loading on some applications, four stroke adjusters may be needed with double rack actuators to avoid pinion gear damage.


Port Flow Controls (P, R, S)

Built in meter-out flow controls provide adjustment of actuator speed and eliminate the cost and space needed for externally plumbed components. A separate ball check is used to provide free flow in the opposite direction. Flow controls may be ordered in conjunction with cushions or stroke adjusters.

Four port flow controls are suggested with double rack actuators to avoid pinion gear damage.

NOTE: When both cushions and port flow controls are specified the end caps will be stamped "C" and "P" respectively near the adjustment needles.

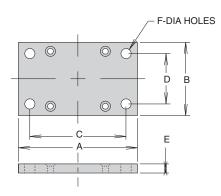
STANDARD ADJUSTMENT NEEDLE LOCATIONS

Needle
Position
2
3
2
3

*On single rack only

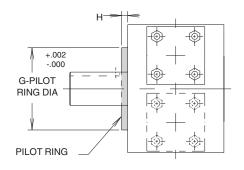
Mounting Options:

Inch Units (F, G, P, R) Metric Units (H, K, S, T)


Flanged and Pilot Mountings

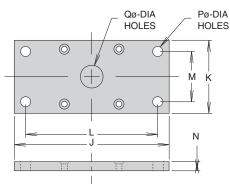
LTR Series rotary actuators are available with options such as face/base, pilot or flanged mounting styles to suit the requirements of different applications.

Note: Actuators are shipped with mounting flange installed unless otherwise noted.


Foot Flange (G, K)

Model			Inch (G)			Metric (K)					
	Α	В	С	D	Е	F	Α	В	С	D	Е	F
10	3.25	2.00	2.625	1.375	250	.281	82	51	67	35	7	6.5
15	4.50	3.00	3.875	2.125	.438	.406	114	76	98	54	11	11
20	4.50	4.00	3.875	3.375	.438	.406	114	102	98	86	11	11
25	5.50	4.00	4.500	3.000	.438	.531	140	102	114	76	11	13.5
32	8.00	5.00	6.500	3.500	.750	.781	N/A	N/A	N/A	N/A	N/A	N/A

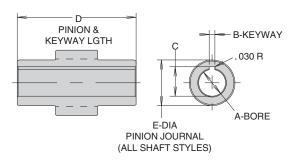
Pilot Ring (P, S)


Model	Incl	n (P)	Metric (S)		
Wodei	G	Н	G	Н	
10	1.124	.125	28.55	3.2	
15	2.000	.25	50.80	6.4	
20	2.166	.25	55.01	6.4	
25	2.680	.25	68.07	6.4	
32	3.347	.25	85.01	6.4	

Front (F, H) or Rear Flange (R, T)

NOTE: Shaft seal cover option "S" is not available with flange mounting.

Model	Inch (F, R)								Ме	tric (l	H, T)			
wodei	7	K	L	М	N	Р	Q	J	K	L	М	N	Р	Q
10	4.25	2.00	3.625	1.375	.250	.281	.625	108	51	92	35	7	6.5	15
15	5.75	3.00	5.125	2.125	.438	.406	1.000	146	76	130	54	11	11	25
20	6.50	4.00	5.875	3.375	.438	.406	1.250	165	102	149	86	11	11	31
25	8.25	4.00	7.250	3.000	.438	.531	1.625	210	102	184	76	11	13.5	40
32	12.00	5.00	10.000	3.000	.750	.781	2.000	305	127	254	76	19	22	48



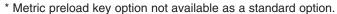
Shaft Options (A, E, R)

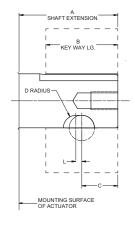
Units are equipped standard with single male keyed shaft (B, D). Double male keyed (C,F) also available as shown on page 9. Also available:

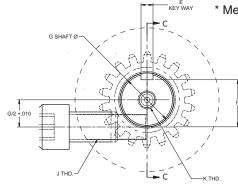
Female Keyed (A) Metric Female Keyed (E)

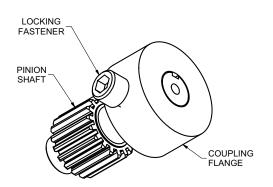
NOTE: Female keyed pinions are designed primarily for pneumatic service. Review shaft stresses before using in a hydraulic application.

Dimensions, inches (A)


Model	Α	В	С	D	E
10	.375 .377	.094 .096	.428 .438	1-13/16	.59
15	.500 .502	.125 .127	.560 .570	2-11/16	.98
20	.750 .752	.187 .189	.837 .847	2-23/32	1.18
25	1.000 1.002	.250 .252	1.083 1.093	3-1/8	1.38
32	1.250 1.252	.250 .252	1.367 1.377	4-9/16	1.77

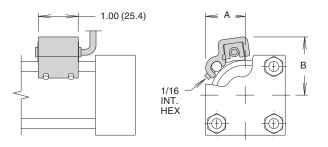

Dimensions, mm (E)


Model	Α	B P9	С	D	E
10	9.05 9.00	3	10.65 10.40	46.0	15.0
15	12.05 12.00	4	14.05 13.80	68.3	24.9
20	20.05 20.00	6	23.05 22.80	69.1	30.0
25	25.05 25.00	8	28.55 28.30	79.4	35.1
32	32.05 32.00	10	35.55 35.30	115.9	45.0


Preload Key (R)*

The preload key option is recommended for use with available Parker transition coupler flanges or any time coupling backlash is not desired.

	Table										
MODEL	А	В	С	D	E	F	G	Н	J	K	L
10	7/8	5/8	.375	.156	.125/ .127	.430/ .425	.500/ .499	1 1/2	3/8-24	10-32 X 3/8	.125
15	1 7/8	1 1/2	.812	.219	.188/ .190	.771/ .761	.875/ .874	2	1/2-20	5/16-24 X 1/2	.125
20	1 7/8	1 1/2	.812	.250	.250/ .252	.986/ .976	1.125/ 1.124	3	5/8-11	3/8-24 X 9/16	.125
25	2 1/4	1 3/4	1.000	.250	.313/ .315	1.201/ 1.191	1.375/ 1.374	3 1/2	3/4-10	3/8-24 X 9/16	0
30	3 1/2	3	1.500	.437	.375/ .377	1.542/ 1.532	1.750/ 1.749	4	1-8	1/2-20 X 3/4	0



Options

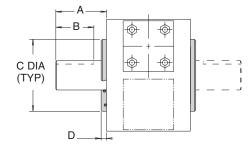
Magnetic Piston (M)

This option prepares the actuator for use with Reed and Hall Effect switches. The "M" option should be specified to provide a magnet on the cylinder piston and aluminum cylinder tubes. The pressure of the actuator is derated by 50% with the magnetic piston option due to the aluminum cylinder tubes.

Order switches separately from the Sensors section.

Model	A inch (mm)	B inch (mm)
10	.84 (21)	1.22 (30)
15	.99 (25)	1.46 (37)
20	1.27 (32)	1.68 (43)
25	1.45 (37)	1.89 (48)
32	1.71 (43)	2.20 (56)

Shaft Seal Covers (S)


Shaft Seal covers are designed to prolong bearing life by isolating them from external contamination and pressure. They are designed for use with standard male shafts only (not hollow shafts). Shaft seals are not available with flange mounting.

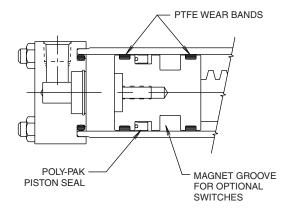
SPECIFICATIONS

Max. Pressure Differential: 500 psi (34 Bar)

Material: Anodized Aluminum Shaft Seal: Double Lip Wiper

Body Seal: O-Ring

Model		A	В		(D		
Model	Inch mm Inch mm		Inch (+.000,002)	mm (+.00,05)	Inch	mm		
10	7/8	22	1/2	12	1.875	48	.25	7
15	1 ⁷ /8	46	1 ⁵ /16	33	3.000	76	.38	10
20	1 ⁷ /8	46	1 ⁵ /16	33	3.250	83	.38	10
25	21/4	56	1 ⁵ /8	41	3.625	92	.38	10
32	3½	88	2 ⁷ /8	73	4.480	114	.38	10


Piston Seals (V,W)

The floating Wear-Pak piston fitted as standard to all LTR Series rotary actuator employes a filled PTFE wear band to prevent metal-to-metal contact. The hydraulic LTR Series actuator uses a Molythane Polypak seal, which is self-energizing for improved sealing. The Molythane seal is wear, roll and extrusion resistant. For higher temperatures or use with synthetic fluids, Fluorocarbon seals should be specified; for water glycol or high water content fluids, carboxilated nitrile seals are available.

FILTRATION

Effective filtration is vital to the long life and satisfactory performance of a rotary actuator. If the piston seals of a rack and pinion rotary actuator are worn or damaged, fluid leaks past the piston and will enter the gear housing.

Any external leakage from the gear housing indicates worn or damaged piston seals. Seals and tubes should be examined and, if necessary, be replaced at the earliest opportunity.

SEAL OPTIONS

Seal Option Code	Seal Type	Wear Ring Type	Fluid Medium	Temperature Range	Hydraulic Filtration
Omit (Standard)	Molythane	Filled PTFE	General purpose applications, petroleum-based fluids	-40° to 180°F (-40° to 82°C)	
Option V	Fluorocarbon	Filled PTFE	High temperature operation, special synthetic fluids	-20° to 250°F (-29° to 121°C)	ISO Class 17/14 Cleanliness Level
Option W	Carboxilated Nitrile	Filled PTFE	Water-based fluids	30° to 180°F (0° to 82°C)	

Feedback Packages

Feedback packages available for use with LTR Series rotary actuators include:

- Precision feedback potentiometer (J)
- Precision resolver feedback (H)

The feedback packages may be ordered as part of the model code. See Sensors section for specifications.

LTR Series

Switch Characteristics

Proximity Switches

- End Cap Mounted
- Solid State Electronics
- LED Indicator
- 10-30 VDC or 50-230 VAC/DC
- PNP and NPN Available
- Senses Cushion Spear on Piston
- Highest Cost
- Long Life

Hall Effect Switches

- Fully Adjustable Travel
- Solid State Electronics
- LED Indicator
- 50-30 VDC
- PNP and NPN Available
- Senses magnet band on piston (Aluminum cylinders required)
- Medium Cost
- Long Life

Reed Switches

- Fully Adjustable Travel
- Mechanical Reed
- LED Indicator
- 50-30 VDC or 85-150 VAC
- Senses magnet band on piston (Aluminum cylinders required)
- Lowest Cost
- Medium Life

Proximity Switches

The inductive type proximity switch provides end of rotation indication. The non-contact probe senses the presence of the ferrous cushion spear and has no springs, plungers, cams or dynamic seals that can wear out or go out of adjustment. The switch is solid state and meets NEMA 4, 12 & 13 specifications. For ease of wiring, the connector housing is rotatable through 360°. To rotate, lift the cover latch, position, and release.

The switch make/break activation point may occur at 0.125" to ±0.125 "from end of stroke. Depending on the actuator size, this distance may cause activation at 2° to 15° before end of stroke.

A standard proximity switch controls 50-230 VAC/DC loads from 5 to 500 mA. The low 1.7 mA off-state leakage current can allow use for direct PLC input. The standard short circuit protection (SCP) protects the switch from a short in the load or line upon sensing such a condition (5 amp or greater current) by assuming a non-conductive mode. The fault condition must be corrected and the power removed to reset the switch preventing automatic restarts.

The low voltage DC switch is also available for use with 10-30 VDC. This switch is in a non-rotatable housing, but does incorporate the short circuit protection.

Both switches are equipped with two LEDs, "Ready" and "Target". The "Ready" LED is lit when power is applied and the cushion spear is not present. The "Target" LED will light and the "Ready" LED will go out when the switch is closed, indicating the presence of the cushion spear. Both LEDs flashing indicates a short circuit condition.

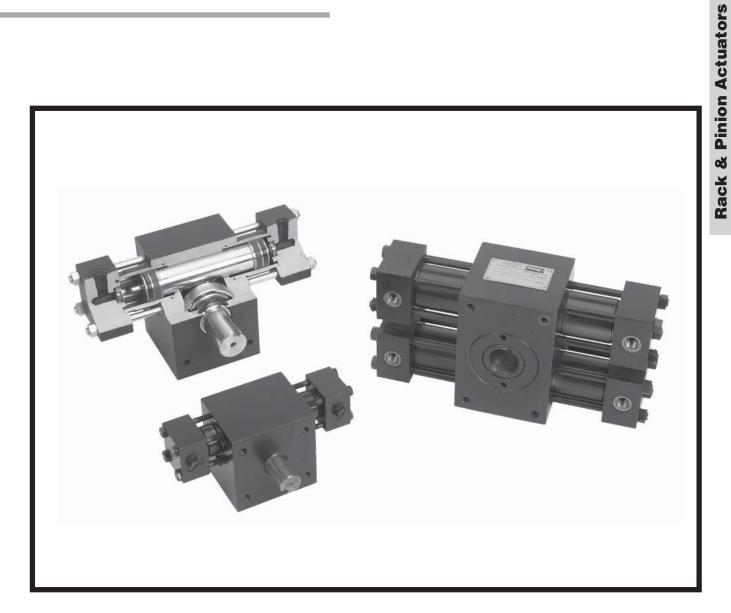
1.35 (39) 0.48(12) A

	A, inch (mm)		
Model	EPS 6&7		
15	2.17 (55.1)		
20	2.75 (69.9)		
25	2.48 (63.0)		
32	2.25 (57.2)		

NOTES:

- 1. Available with or without cushions.
- 2. Not available with stroke adjusters.
- 3. Prsesure rating: 3000 psi
- 4. Operating temperature: -4°F to 158°F
- 5. Specify switch type, orientation and voltage when ordering
- 6. Not available on size 10 units.
- The low voltage DC switch is available in non-rotatable style only. Consult representative for further information.

Hall Effect and Reed Switches


Reed and Hall Effect switches are available for use with LTR Series rotary actuators. The "M" option should be specified to provide a magnet on the cylinder piston and to use aluminum cylinders.

Order proximity, Hall Effect and reed switches separately. See Sensors section for specifications and ordering information.

HTR Series

Hydraulic Rack & Pinion Rotary Actuators

Con	ite	nts
Foa	tiir	20

-Parker

realures	∠
Ordering Information	3-4
Specifications	5-6
Engineering Data	6-8
Dimensional Data	
Options	
Cushions	11
Stroke Adjusters	12

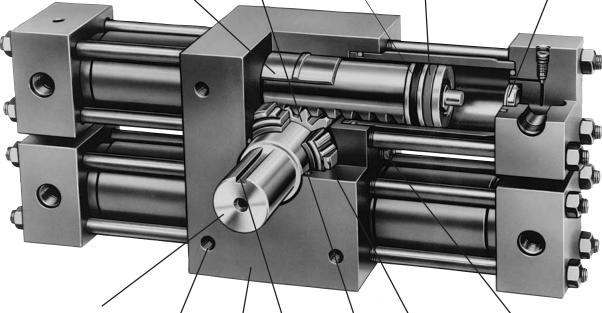
Options	(cont)

Mounting	13
Shaft	14
Port Threads, Port Location	15
Seals	16
Proximity Sensors	17
Feedback Packages	17

PISTON SEALS

Depending on actuator size, either dual lip seals made from abrasion resistant polyurethane or heavy duty, deep section Polypak seals made from Molythane for dependable service in most applications. Options: Flourocarbon seals for certain synthetic fluids; and carboxilated nitrile seals for water based fluids. Piston seals can be inspected and replaced without disconnecting the load from the shaft. (Employ proper safety practices to prevent damage to people or equipment.)

RACK & PINION made from through hardened, high strength alloy steels for long and durable service life in most applications. Option: Case hardening.


BRONZE RACK BEARING reduces friction, wear and tear between the housing and the rack gear. Replaceable bronze bearing comes standard with HTR15 through HTR600 actuators. High strength bearing material options available.

WEAR BANDS Filled PTFE bands (std) precisely position pistons and prevent side loading

from scoring cylinder bores. High strength wear band options available.

OPTIONAL CUSHIONS

If properly adjusted, cushions can serve as a braking device for most industrial loads and applications. The proven Parker "floating cushion bushing" serves as a high performance check valve for quick cushion get away and the needle valve can be adjusted to regulate the exhaust flow from the piston. Our design uses no springs or check valve seats that can fatigue or break under normal usage.

STANDARD MALE KEYED

SHAFT is made integral with the pinion gear and is suitable for most applications. Options: double male key, hollow bore keyed and spline shafts are available.

KEYWAY

Mid stroke at 12:00 position is standard

RELIEF VALVE is designed to prevent the housing from seeing pressure due to piston seal bypass. Seal kits are available.

HOUSING

The heavy, high strength, shock resistant, ductile iron housing serves as a firm base to drive large output torque requirements.

PINION SEALS

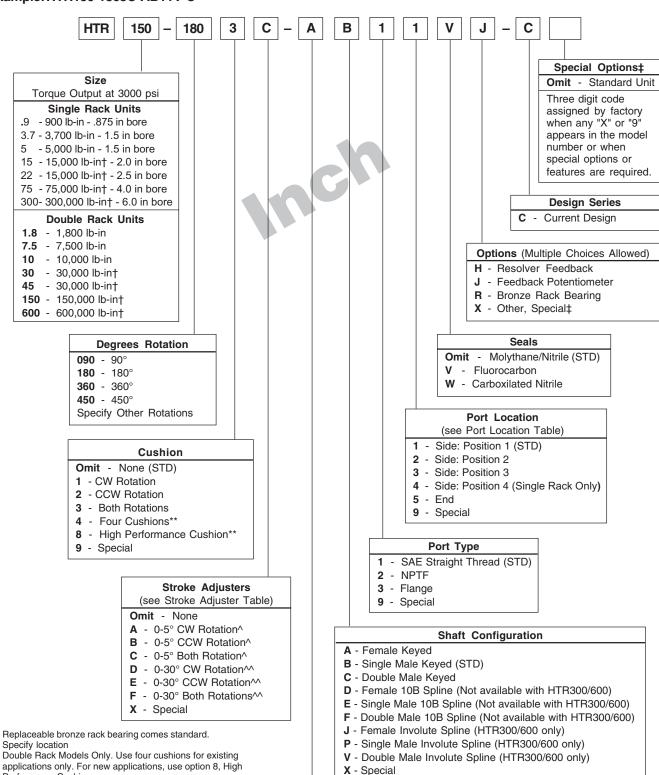
Dual lobed seal of abrasion resistant materials seals effectively with minimum wear at dynamic conditions.

TAPERED ROLLER **BEARINGS** are

generously sized to support large external axial and radial loads applied to the shaft.

THREADED MOUNTING HOLES

Our standard mounting uses four bolt holes drilled and tapped on the front and back of the housing. Options: additional pilot ring or base mount.



જ

Ordering Information - Inch

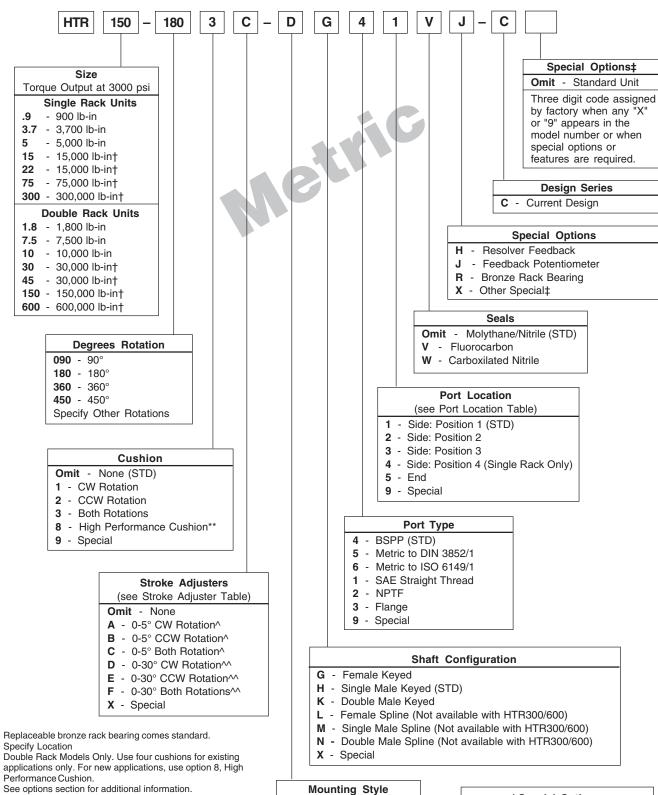
Model Code and Ordering Information Example: HTR150-1803C-AB11V-C

- Performance Cushion.
 - See options section for additional information.
- Not available with End Ports. Standard 5° Stroke Adjusters and Standard Cushions available together on all units. Single rack units require additional "A" length.
- M Not Available with End Ports or Cushions

Mounting Style

- A Face (STD)
- B Base Mount
- P Pilot Mount
- X Special

‡Special Options


Other options such as air bleeds* and sensors must be ordered separately with detailed text.

HTR.pmd. M&A

Model Code and Ordering Information

Example: HTR150-1803C-DG41VG-C

C - Face (STD)

D - Base Mount

T - Pilot Mount

X - Special

‡Special Options

Other options such as air bleeds* and sensors must be ordered separately with detailed text.

1800 HTR.pmd. M&A

Not available with End Ports. Standard 5° Stroke Adjusters

and Standard Cushions available together on all units.

Single rack units required additional "A" length.

M Not Available with End Ports or Cushions

HTR Series

The HTR Series actuator incorporates many hydraulic and mechanical features that make this actuator suitable for high production applications. These features include: high load capability tapered roller bearings; a chrome alloy steel rack and pinion gear set; a high strength ductile iron or steel housing; and proven Parker Hannifin cylinder components. These features make the HTR Series actuators robust and suitable for integration into the most demanding production systems.

The HTR Series actuators have been successfully employed in automotive plant production machinery; machine tool equipment; plastics and rubber processing machinery; basic metals production machinery and in material handling machinery.

The HTR Series actuator can be employed as an integral machine component. For example, the actuator can simultaneously transmit torque and support the line shaft or the load. Such an arrangement eliminates one set of external support bearings. For example: the optional cushions can be employed to decelerate an external load. This feature eliminates the need for an external deceleration device such as a shock absorber or a brake.

Additionally, the HTR actuator can simplify the installation of machine parts. For example: The hollow shaft feature can eliminate a coupling. The actuator shaft can be connected to the line shaft by means of a square shaft key; or the housing can be drilled and tapped to mount various brackets.

The Wear-Pak® piston uses self energizing molythane piston seals. These are the only pressurized dynamic seals. The pinion shaft uses low pressure seals. These polypak piston seals can be inspected and serviced while the actuator remains installed on the machinery.

SPECIFICATIONS

- Maximum operating pressure: 3000 psi (207 Bar) non-shock except HTR22/45: 2000 psi (138 Bar) non-shock
- Standard rotations: 90°, 180°, 360°, 450°
- Rotational tolerance: -0°, +2°
- Output torques @ 3000 psi (204 Bar): 900 lb-in to 600,000 lb-in
- Maximum breakaway pressure: 70 psig (4.8 Bar)
- Mounting orientation: unrestricted
- Operating temperature range:

Nitrile seals -40° to 180° F (- 40° to 82° C) Fluorocarbon seals -20° to 250° F (- 29° to 121° C)

5

- Standard timing: Keyway in 12:00 position at midstroke
- Recommended filtration: ISO class 17/14 or cleaner

Specifications

Model		Maximum Pressure		al Output To at Specifie		Gear T		Maximum Angular	Standard	Displacement	Standard Unit	
Single Rack	Double Rack	Rating, psi (Bar)	1000 psi (69 Bar)	2000 psi (138 Bar)	3000psi (207 Bar)	lbf-inch ⁽²⁾	PSID(3)	Backlash, Minutes ⁽⁴⁾	Rotation Degrees	in³ (cm³)	Weight, lb (kg)	
		2000	000	000	000				90	0.57 (9.3)	11 (5)	
HTR.9		3000	300	600	900	400	1340	45	180	1.13 (19)	14 (6)	
		(204)	(34)	(68)	(102)				360	2.27 (37)	20 (9)	
		0000	000	1000	1000				90	1.13 (19)	16 (7)	
	HTR1.8	3000 (204)	600 (68)	1200 (136)	1800 (203)	850	1420	45	180	2.27 (37)	19 (9)	
		(204)	(00)	(130)	(203)				360	4.53 (74)	25 (11)	
		0000	4050	0500	0700				90	2.43 (40)	28 (13)	
HTR3.7		3000	1250	2500	3700	1570	1300	40	180	4.86 (80)	31 (14)	
		(204)	(141)	(283)	(418)				360	9.71 (159)	37 (17)	
									90	4.86 (79)	35 (16)	
	HTR7.5	3000	2500	5000	7500	3330	1350	40	180	9.71 (159)	41 (19)	
		(204)	(283)	(565)	(848)				360	19.4 (318)	53 (24)	
									90	3.12 (51)	37 (17)	
HTR5		3000	1650	3300	5000	2700	1620	30	180	6.25 (102)	39 (18)	
		(204)	(186)	(373)	(565)				360	12.50 (205)	49 (22)	
									90	6.25 (102)	45 (20)	
	HTR10	3000	3300	6600	10000	5725	1720	30	180	12.50 (205)	54 (25)	
		(204)	(373)	(746)	(1130)				360	25.0 (410)	66 (30)	
									90	8.9 (145)	55 (25)	
HTR15	R15	3000	5000 (565)	10000	15000 (1695)	9300	1860	25	180	17.8 (291)	60 (27)	
		(204)		(1130)					360	36.5 (582)	70 (32)	
					30000	19700	1970	25	90	17.8 (291)	89 (40)	
	HTR30	3000	10000	20000					180	35.5 (582)	97 (44)	
		(204)	(1130)	(2260)	(3390)				360	71.0 (1164)	117 (53)	
									90	13.9 (227)	60 (27)	
HTR22		2000	7500	15000	_	9300	1240	25	180	27.8 (455)	66 (30)	
		(136)	(848)	(1695)					360	55.5 (910)	79 (36)	
									90	27.8 (455)	98 (45)	
	HTR45	2000	15000	30000	_	19700	1320	25	180	55.5 (910)	108 (49)	
		(136)	(1695)	(3390)					360	111 (1819)	134 (61)	
									90	46 (754)	197 (90)	
HTR75		3000	25000	50000	75000	25000	1000	25	180	92 (1508)	219 (100)	
		(204)	(2825)	(5650)	(8475)				360	184 (3016)	263 (120)	
									90	92 (1508)	321 (146)	
	HTR150	3000	50000	100000	150000	53000	1060	25	180	184 (3016)	367 (167)	
		(204)	(5650)	(11300)	(16950)				360	368 (6032)	454 (206)	
									90	178 (2913)	760 (345)	
HTR300		3000	100000	200000	300000	125000	1250	20	180	355 (5827)	840 (382)	
		(204)	(11300)	(22600)	(33900)			-	360	711 (11653)	910 (414)	
									90	355 (5827)	1110 (505)	
	HTR600	3000	200000	400000	600000	265000	1325	20	180	711 (11653)	1260 (573)	
		(204)	(22600)	(45200)	(67800)				360	1241 (23290)	1560 (709)	
	l								L		(/	

^{1.} The durability is defined as the capacity of the gear set to support the stated load without fatigue related gear surface damage. Use the durability ratings for high production duty of 1 million cycles and/or high speed applications (180° in less than three seconds or more than one cycle per minute).

^{2.} Durability rated output torque.

^{3.} Pressure differential between the inlet and outlet ports (non shock).

^{4.} To minimize backlash in the actuator, order a double rack a few degrees longer and add stroke adjusters.

Engineering Data

Kinetic Energy Capacity

The energy values below assume drive pressure is maintained through cushion stroke.

Single Rack Units with Single Set of Cushions (20°)

		Kinetic Energy Rating(in-lb) of Cushion at Specified Drive Pressure*											
Model	0 psi		500 psi		1000 psi		1500 psi		2000 psi		2500 psi		
	Max. Durability		Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	
HTR.9	314	140	262	140	209	140	157	140	105	105	52	52	
HTR3.7	1309	548	1091	548	872	548	654	548	436	436	218	218	
HTR5	1745	942	1454	942	1163	942	873	873	582	582	291	291	
HTR15	5235	3246	4362	3246	3490	3246	2618	2618	1745	1745	872	872	
HTR22	5235	3246	3926	3246	2618	2618	1309	1309	0	0	0	0	
HTR75	26175	8725	21812	8725	17448	8725	13088	8725	8724	8724	4362	4362	
HTR300	104700	43625	87247	43625	69793	43625	52350	43625	34897	34897	17449	17449	

Double Rack Units with Single Set of Cushions (20°)

		Kinetic Energy Rating(in-lb) of Cushion at Specified Drive Pressure*												
Model	Model 0 psi		500 psi		1000 psi		1500 psi		2000 psi		2500 psi			
Max. Durabilit		Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability		
HTR1.8	314	140	209	140	105	105	0	0	0	0	0	0		
HTR7.5	1309	548	873	548	436	436	0	0	0	0	0	0		
HTR10	1745	942	1163	942	582	582	0	0	0	0	0	0		
HTR30	5235	3246	3490	3246	1745	1745	0	0	0	0	0	0		
HTR45	5235	3246	2618	2618	0	0	0	0	0	0	0	0		
HTR150	26175	8725	17450	8725	8727	8725	0	0	0	0	0	0		
HTR600	104700	43625	69801	43625	34907	34907	0	0	0	0	0	0		

Double Rack Units with Double Set of Cushions (20°) **

	Kinetic Energy Rating(in-lb) of Cushion at Specified Drive Pressure*											
Model	0 psi		500 psi		1000 psi		1500 psi		2000 psi		2500 psi	
	Max. Durability		Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
HTR1.8	628	297	523	297	419	297	314	297	209	209	105	105
HTR7.5	2618	1162	2181	1162	1745	1162	1309	1162	872	872	436	436
HTR10	3490	1998	2908	1998	2326	1998	1745	1745	1163	1163	582	582
HTR30	10470	6875	8725	6875	6979	6875	5235	5235	3490	3490	1745	1745
HTR45	10470	6875	7853	6875	5235	5235	2618	2618	0	0	0	0
HTR150	52350	18497	43623	18497	34897	18497	26175	18497	17448	17448	8725	8725
HTR600	209400	92485	174493	92485	139586	92485	104700	92485	69793	69793	34899	34899

- Must deduct work (energy) done to overcome potential energy effects of load. $W_{PE} = T_{PE} \times \theta$, where θ is in radians.
- ** Extreme care must be exercised so that both cushions are adjusted equally for each direction or dangerous pressure intensification and gear train stresses could result. (Suggest high performance cushion option.)

Cushion Deceleration and Control

The cushion causes the resisting torque that can be used to decelerate a rotational load. Please note the cushion has to provide enough resistance to control: drive torque caused by the hydraulic system pressure; plus the torque caused by gravity pulling on the rotational load; and the kinetic energy associated with the motion of the inertia load. Since the actuator's cushion has to be able to control the sum of all three torque factors, we suggest including cushion capacity as one of the actuator's selection criteria.

It is strongly suggested that proportional valves be used instead of cushions to control (decelerate) high inertial loads. This provides the ability to reduce inlet pressure while generating deceleration pressure. It also allows for longer ramp times, thus increasing deceleration stroke.

HTR.pmd, M&A

SUPPLEMENTAL INFORMATION KINETIC ENERGY BASIC FORMULA

 $KE = 1/2 J_m \omega^2$

ω= 0.0175 x $\frac{2\Theta_A + \Theta_C + 2\Theta_D}{\text{Rotation Time (sec.)}}$

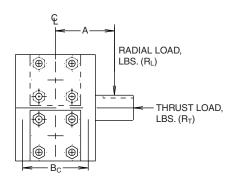
where:

KE = Kinetic Energy (in-lb)

J_m = Rotational Mass Moment of Inertia (in-lb-sec²) See page 8 of LTR Section for formulas.

= Peak Velocity (rad/sec)

(Assuming trapezoidal velocity profile)


 Θ_A = Acceleration Angle (deg)

 Θ_{C} = Constant Velocity Angle (deg)

 Θ_D = Deceleration Angle (deg)

Bearing Load Capacities

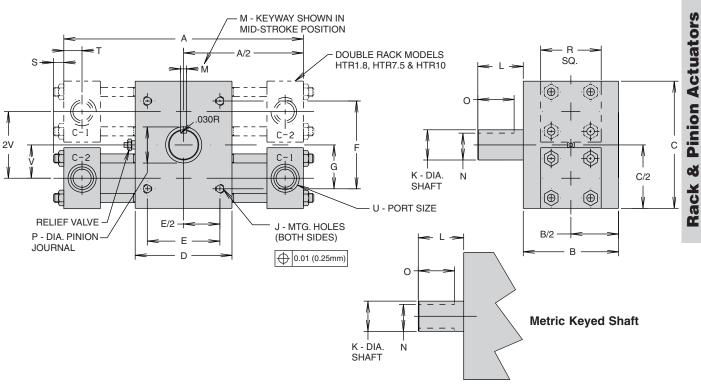
Dynamic ¹ Bearing Load Capacities vs. Operating Pressure														
		ial Load (lb Per Bearing)		Thrus	st Load (lbs	s.)	Bearing	1	Overhung Moment (lb-in) $R_L \times (A+B_c/2)$ @					
Model	1,000 psid (69 bar)	2,000 psid (138 bar)	3,000 psid (207 bar)	1,000 psid (69 bar)	2,000 psid (138 bar)	3,000 psid (207 bar)	Centers (B _c)	1,000 psid (69 bar)	2,000 psid (138 bar)	3,000 psid (207 bar)				
HTR.9	3927	3824	3722	2690	2590	2490	0.62	2435	2371	2307				
HTR1.8	4030	4030	4030	2790	2790	2790	0.62	2499	2499	2499				
HTR3.7	6448	6146	5843	3610	3360	3120	1.06	6835	6514	6194				
HTR7.5	6750	6750	6750	3830	3830	3830	1.06	7155	7155	7155				
HTR5	8258	7956	7653	4240	4020	3810	1.02	8423	8115	7807				
HTR10	8560	8560	8560	4460	4460	4460	1.02	8731	8731	8731				
HTR15	14823	14286	13748	12300	11810	11330	1.83	27126	26143	25160				
HTR30	15360	15360	15360	12780	12780	12780	1.83	28109	28109	28109				
HTR22	14521	13681	na	12060	11330	na	1.83	26573	25037	na				
HTR45	15360	15360	na	12780	12780	na	1.83	28109	28109	na				
HTR75	20471	18322	16174	16540	14060	11570	3.99	81680	73106	64533				
HTR150	22620	22620	22620	19020	19020	19020	3.99	90254	90254	90254				
HTR300	38355	33520	28686	24090	19710	15340	5.95	228214	199447	170680				
HTR600	43190	43190	43190	28460	28460	28460	5.95	256981	256981	256981				

NOTE:

- 1. Static Bearing Load Capacities = Dynamic Values x 1.5
- 2. Values listed are "Bearing" moment capacities. Standard male shaft sizes do not provide 4:1 design factor at these operating conditions. Larger shaft sizes are available. Consult factory for further details.

Lubrication

In general, low speed, high torque applications require class 5 or class 6 lubrication provisions. Our assemblers use TEXACO MOLYTEX EP(2) extreme pressure grease to lubricate our gear sets as our standard lubricant. The grease should be replaced with each major overhaul.


Some high cycle applications with an operational system pressure below 1000 PSIG (69 Bar) and with adequate mechanical shock control may successfully use the hydraulic fluid as the gear train lubricant. We can modify the housing by adding a case drain line to carry away excessive lubricant. Ensure the case drain connection is looped to ensure the housing remains filled with lubricant.

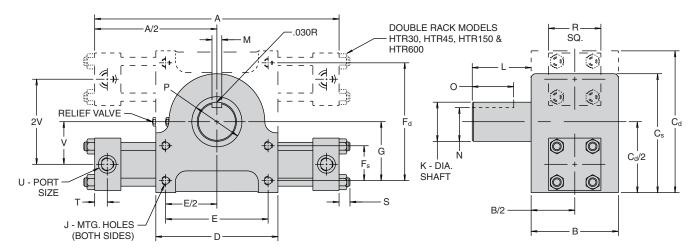
High performance applications that feature high pressure and high cycle rates should consider using an external lubrication circuit system to charge the gear set with clean, cool lubricant suitable for class 3 or 4 service. An SAE80 or SAE90 lubricant circulating system should be suitable. We can modify the housing for a lubrication circuit inlet and outlet. Ensure the plumbing is run in such a way the housing remains filled with lubricant.

ø

HTR.9 thru HTR10 Single and Double Rack Inch Units with Face Mount (A) and Male Keyed Shaft (B) Metric Units with Face Mount (C) and Male Keyed Shaft (H)

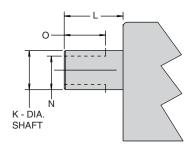
Dimensions for Inch Units (inches)

Dillicito	.0113 101 1		,,,,,	(100)															
Model	Rotation Degrees	Α	В	С	D	E	F	G	J	K	L	М	N	0	Р	R	S	Т	U (SAE)	V
LITD	90	71/4							5/16-18	.875		.250	.732						9/16-18	
HTR.9 HTR1.8	180	91/8	3	3 ⁵ /8	31/2	2.625	2.375	1.188	х	.874	1 ⁵ / ₁₆	.252	.722	1	1	1 ³ / ₄	3/8	.50	(#6)	0.94
111111.0	360	12 ⁷ /8							1/2 DP	.074		.232	.122						(#0)	
HTR3.7	90	10 ¹ /8							3/8-16	1.250		011	1 074						9/ 10	
HTR7.5	180	13¹/8	315/16	5 ¹ / ₄	4	3.000	3.625	1.813	х	1.249	1 ⁷ /8	.311	1.074	1 ¹ / ₂	1 ¹ / ₂	21/2	1/2	.72	⁹ / ₁₆ -18 (#6)	1.38
1111117.5	360	18 ¹ / ₄							9/16 DP	1.240		.512	1.004						(#0)	
LITDE	90	11 ³ /8							3/8-16	1.750		.438	1 500						9/ 10	
HTR5 HTR10	180	14 ⁵ /8	315/16	6	4	3.000	5.000	2.500	х	1.749	25/8	.440	1.500	2	1 ²⁵ / ₃₂	21/2	1/2	.72	⁹ / ₁₆ -18 (#6)	1.63
1111110	360	22 ¹ / ₈	1						9/16 DP			.440	1.490						(#0)	


Dimensions for Metric Units (mm)

Model	Rotation Degrees	Α	В	С	D	E	F	G	J	K +0,02	L	M P9	N	0	Р	R	s	Т	U BSPP/G	V
HTR.9	90	184.2							M8				+.0,1							
HTR1.8	180	231.8	76.2	92.1	88.9	70	60	30	x1.25	22	33	6	18.5	25	25.4	44.5	9.5	12.7	1/4	23.8
111111.0	360	327.0							x 13 DP											
HTR3.7	90	257.2							M10				+.0,2							
HTR7.5	180	333.4	100.0	133.4	101.6	75	90	45	x1.5	28	48	8	24	38.1	38.1	63.5	12.7	18.3	1/4	34.9
111117.0	360	463.6							x 16 DP											
HTR5	90	288.9							M10				+.0,2							
HTR10	180	371.5	100.0	152.4	101.6	75	125	62.5	x1.5	44	66	12	39	50	44.5	63.5	12.7	18.3	1/4	41.3
	360	562.0							x 16 DP											

HTR.pmd, M&A


HTR15 thru HTR600 Single and Double Rack Inch Units with Face Mount (A) and Male Keyed Shaft (B) Metric Units with Face Mount (C) and Male Keyed Shaft (H)

Dimensions

Model	Rotation Degrees	A (inch)
	90	16
HTR15/30	180	21 ³ /8
	360	32 ¹ /8
	90	16 ³ /8
HTR22/45	180	21¾
	360	32 ³ /8
	90	201/4
HTR75/150	180	27 ⁵ /8
	360	421/4
	90	311/4
HTR300/600	180	43¾
	360	68 ⁷ /8

Model	Rotation Degrees	A (mm)
	90	406.4
HTR15/30	180	543.0
	360	816.0
	90	416.0
HTR22/45	180	552.5
	360	822.3
	90	514.4
HTR75/150	180	701.7
	360	1073.2
	90	793.8
HTR300/600	180	1111.3
	360	1749.4

Metric Keyed Shaft

Dimensions –Inch

Model	В	Cd	Cs	D	Е	Fd	Fs	G	J	К	L	М	N	0	Р	R	s	Т	U (SAE)	٧
HTR15 HTR30	5	- 8 ¹ / ₈	6 ¹³ / ₁₆	7	5.875	- 6.750	2.000	3.375	½-13 x ¾ DP	2.250 2.249	33/8	.563 .565	1.933 1.923	23/8	2 ⁷ /8	3	5/8	.72	¾-16 (#8)	2 ⁷ /16
HTR22 HTR45	5	- 8 ³ / ₈	6 ¹⁵ / ₁₆	7	5.875	- 6.750	2.000	3.375	½-13 x ¾ DP	2.250 2.249	33/8	.563 .565	1.933 1.923	23/8	2 ⁷ /8	3½	5/8	.75	¾-16 (#8)	2 ⁷ /16
HTR75 HTR150	7½	- 12 ⁷ /8	9 ¹⁵ / ₁₆	8½	6.500	_ 11.500	4.500	5.750	³ ⁄ ₄ -16 x 1 ¹ / ₈ DP	3.000 2.999	4½	.750 .752	2.577 2.567	33/8	3¾	5	1	.84	1 ¹ / ₁₆ -12 (#12)	3½
HTR300 HTR600	12	- 18¾	151/4	15 ⁷ /8	13.000	- 13.500	5.000	7.625 6.750	1¼-7 x 1 ⁷ / ₈ DP	5.000 4.999	7½	1.250 1.252	4.296 4.286	6	6½	7½	11/4	1.25	1 ⁵ / ₁₆ -12 (#16)	5 ¹ / ₈

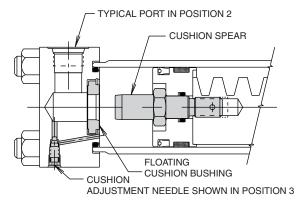
Dimensions –Metric (Metric male and female shafts have 2 keyways)

Model	В	Cd	Cs	D	E	Fd	Fs	G	J	K +0,02	L	M P9	N +0,2	0	Р	R	s	Т	U BSPP/G	v
HTR15 HTR30	127.0	_ 206.4	174.6 –	177.8	150	_ 170	50 -	85	M12x1.75 x19 DP	54	86	16	48	60	73.0	76.2	15.9	18.3	1/2	61.9
HTR22 HTR45	127.0	_ 212.7	176.2 –	177.8	150	_ 170	50 -	85	M12x1.75 x19 DP	54	86	16	48	60	73.0	88.9	15.9	19	1/2	61.9
HTR75 HTR150	190.5	327	254.0 -	215.9	165	_ 290	115	145	M20x2.5 x30 DP	76	115	22	67	85	95.3	127.0	25.4	21.3	3/4	88.9
HTR300 HTR600	304.8	- 476.3	387.4	403.2	330	_ 350	125 –	175 195	M30x3.5 x48 DP	125	190	32	114	152	165.1	190.5	31.8	31.8	1	130.2

Options

Cushions (1, 2, 3, 4)*

The standard cushion operates over the last 20° of rotation in either or both directions. A floating bushing ensures no binding of cushion spear. All cushions are fully adjustable.


For severe operating conditions high performance cushions should be fitted on double rack units. On double rack units with only two cushions, cushions are located on upper cylinders.

* For gear train durability, see chart below.

STANDARD CUSHION ADJUSTER NEEDLE LOCATIONS

Port	Cushion
Position	Adjuster Position
1	2
2	3
3	2
4**	3
5	2

^{**}Single rack only.

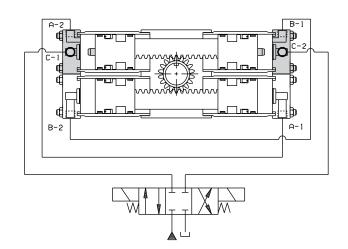
Suggestions: Use either Type 4 or Type 8 cushion option with HTR1.8, 7.5, 30, 45, 150 and 600 size actuators. Avoid Type 1, 2 or 3 cushions with double rack units. The use of proportional valves instead of cushions is recommended with high inertial loads.

High Performance Cushion (8)

(This option can be specified only with double rack units)

By combining the output/exhaust flow from two cylinders, then routing it through a single cushion bushing and cushion adjuster, cushion performance is enhanced. The increased cushion flow results in better control, doubles the cushioning torque, and eliminates dangerous pressure intensification. This unique circuit also eliminates two pipe or tubing tees.

OPERATION:


The work ports of a standard directional valve are plumbed to ports C-1 and C-2. Port A-1 is plumbed directly to A-2, and port B-1 is plumbed to B-2. When pressure is applied to port C-1 (clockwise shaft rotation), fluid is also directed through line A to the other rack. Exhaust flow from B-1 through B-2 is directed through the cushion bushing and cushion adjustment. When the cushion spear closes off the main passage, total flow from both end caps is directed across one cushion adjustment needle, equalizing back pressure and improving performance. Alternatively, pressurizing C-2 and exhausting C-1 reverses the operation.

DIMENSIONAL INFORMATION:

Units are identical to standard double rack and pinion units, with the exception of porting location. The chart describes the location of the ports.

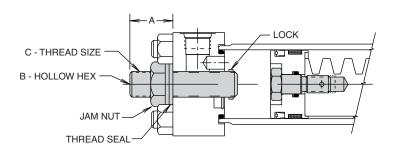
GEAR SET DURABILITY

The table to the right provides energy ratings based on gear train durability when using various cushion options for the HTR Series.

Work Ports C-1, C-2 Port Position	Cushion Adjustment Position	Connection Ports A-1, A-2, B-1, B-2 Port Position
1	2	3
2	3	1
3	2	1
5	2	3

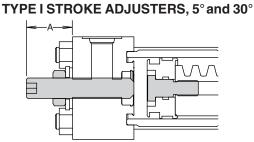
Model	Total Energy (in-l		Port to P (PSI	J. 1 ==		
	Code 1, 2, 3	Code 8	Code 1, 2, 3	Code 8		
HTR.9	140	_	1340	_		
HTR1.8	140	297	670	1340		
HTR3.7	548	_	1300	_		
HTR7.5	548	1162	650	1300		
HTR5	942	_	1620	_		
HTR10	942	1998	810	1620		
HTR15/22	3246	_	1860/1240	_		
HTR30/45	3246	6875	930/620	1860/1240		
HTR75	8725	_	1000	_		
HTR150	8725	18497	500	1000		
HTR300	43625	_	1250	_		
HTR600	43625	92485	625	1250		

HTR.pmd. M&A

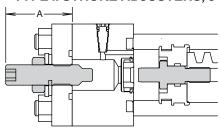

Stroke Adjusters

Fine control of the end of travel points of the rotary actuator can be obtained by specifying stroke adjusters. These operate by reducing the maximum travel of the actuator within preset limits of either 5° or 30° in each direction. Adjustment within this range is variable and may be carried out by the user. Several types of stroke adjusters are available as shown – the designs illustrated are suitable for applications requiring infrequent adjustment.

Limit the setup of stroke adjust to 1-2 adjustments. If frequent adjustments are required, consult factory.


Stroke Adjusters and Cushions

5° stroke adjusters may be combined with the cushioning devices shown. 30° stroke adjusters cannot be combined with cushions. The addition of stroke adjusters requires an increase in build length. On double rack units with cushions, the cushion is fitted to the upper rack and the stroke adjuster to the lower. The increase in build length, for both single and double rack units, is shown as dimension A in the table. Cushion performance may be reduced by the addition of a stroke adjuster. Please consult the factory in critical applications.



Lock limits unthreading from outside.

Caution: damage to end cap may result if disassembled in this direction.

TYPE II STROKE ADJUSTERS, 5°

				A (N	lax)								
Model	One (1) Turn	TYF 5° Adjusti Cushioned	ment w/o	TYF 5° Adjust Cushioned		TYP 30° Adjustr Cushioned	ment w/o	В	С				
	Adj.	Inch	mm	Inch	mm	Inch	mm						
HTR.9 HTR1.8	4.2°	.50	12.7	.88	22.4	.75	19.1	5/32	⁵ /16 - 24 UNF				
HTR3.7 HTR7.5	3.3°	.63	16	1.13	28.7	1.13	28.7	1/4	¹/2 - 20 UNF				
HTR5 HTR10	2.5°	.63	16	1.13	28.7	1.13	28.7	1/4	¹/2 - 20 UNF				
HTR15/30 HTR22/45	2.0°	.88	22.4	1.81	46	1.63	41.4	3/8	³ /4 - 16 UNF				
HTR75 HTR150	2.0°	2.56	65	3.75	95.3	3.56	90.4	¹⁵ / ₁₆ Ext. Sq.	1 ¹ /2 - 12 UNF				
HTR300 HTR600		CONSULT FACTORY											

Mounting Hole

Bolt Size

5/16-18 UN x 12 dp

3/8-16 UN x 9/16 dp

3/8-16 UN x 9/16 dp

1/2-13 UN x 3/4 dp

1/2-13 UN x 3/4 dp

3/4-16 UN x 1-1/8 dp

1-1/4-7 UN x 1-7/8 dp

Model

HTR.9

HTR1.8

HTR3.7

HTR7.5

HTR10

HTR15

HTR22

HTR30

HTR45

HTR75

HTR150 HTR300

HTR600

*Without additional reinforcement.

HTR5

Suggested

Bolt Torque

126 lb-in

300 lb-in

300 lb-in

60 lb-ft

60 lb-ft

160 lb-ft

720 lb-ft

Base and Pilot Mounting

with the options of face, base, or pilot

HTR Series rotary actuators are available

mounting styles to suit the requirements of

different applications. Mounting dimensions

for the face mounting styles are shown with

pages. The equivalent dimensions for base

and pilot mounting styles are shown in the

Mounting Options (B, D, P, T)

other major dimensions on the previous

tables below.

Mounting Face

Torque Limit*

900 lb-in

1800 lb-in

3750 lb-in

7500 lb-in

7500 lb-in

10,000 lb-in

15,000 lb-in

15,000 lb-in

30,000 lb-in

30,000 lb-in

63,500 lb-in

99,740 lb-in

300,000 lb-in

600,000 lb-in

Rack

0.01 (0.25mm)

Base Mounting -Inch (B)

Model	Α	В	С	D	Е	F							
HTR.9 HTR1.8	2.250	3	1.813	2.625	31/2	⁵ / ₁₆ -18 NC x ¹ / ₂ DP							
HTR3.7 HTR7.5	3.000	315/16	2.625	3.000	4	³ / ₈ -16 NC x ⁹ / ₁₆ DP							
HTR5 HTR10	3.000	315/16	3.000	3.000	4	³ / ₈ -16 NC x ⁹ / ₁₆ DP							
HTR15/30 HTR22/45	3.875	5	4.063 4.188	5.875	7	¹ / ₂ -13 NC x ³ / ₄ DP							
HTR75 HTR150	5.750	71/2	6.438	6.500	81/2	³ / ₄ -16 NF x 1 ¹ / ₈ DP							
HTR300 HTR600	9.500	12	9.375	13.000	15 ⁷ /8	1 ¹ / ₄ -7 NC x 1 ⁷ / ₈ DP							

Base Mounting – Metric* (D)

			• • • • • • • • • • • • • • • • • • • •	(-)		
Model	Α	В	С	D	E	F
HTR.9 HTR1.8	60	76.2	46.1	70	88.9	M8 x 1.25 x 13
HTR3.7 HTR7.5	75	100.0	66.7	75	101.6	M10 x 1.5 x 16
HTR5 HTR10	75	100.0	76.2	75	101.6	M10 x 1.5 x 16
HTR15/30 HTR22/45	100	127.0	103.2 106.4	150	177.8	M12 x 1.75 x 19
HTR75 HTR150	145	190.5	163.5	165	215.9	M20 x 2.5 x 30
HTR300 HTR600	240	304.8	238.2	330	403.2	M30 x 3.5 x 48

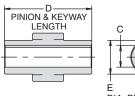
Pilot Mounting -Inch (P), Metric (T)

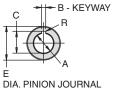
.03 x 45° .03R

	In	ch	Metri	c*
Model	Α	В	Α	В
HTR.9 HTR1.8	1.875 1.873	1/4	47.63	6.5
HTR3.7 HTR7.5	2.625 2.623	1/4	66.68	6.5
HTR5 HTR10	2.875 2.873	1/4	73.03	6.5
HTR15/30 HTR22/45	4.250 4.248	3/8	107.95	10
HTR75 HTR150	5.500 5.498	3/8	139.67	10
HTR300 HTR600	8.750 8.748	1/2	222.25	12

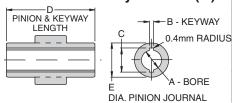
^{*}Dimensions given in mm.

HTR.pmd, M&A

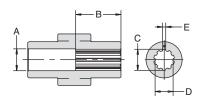

Shaft Options


Single Male Keyed (B)

Metric version (H) also available

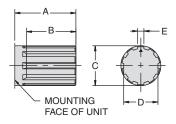

Model	Torque, Ib-in	Key Size	Suggested Key Material
HTR.9/HTR1.8	1,800	¹ /4 x ¹ /4 x 1	C1018CR
HTR3.7/HTR7.5	7,500	⁵ /16 x ⁵ /16 x 1 ¹ /2	C1018CR
HTR5/HTR10	10,000	⁷ /16 x ⁷ /16 x 2	C1018CR
HTR15/HTR30	30,000	⁹ /16 x ⁹ /16 x 2 ³ /8	C1018CR
HTR22/HTR45	30,000	⁹ /16 x ⁹ /16 x 2 ³ /8	C1018CR
HTR75/HTR150	102,000	³ /4 x ³ /4 x 3 ³ /8	C1045CR
HTR300/HTR600	475,000	1 ¹ /4 x 1 ¹ /4 x 6	C1018CR

Female Keyed Shaft (A)



Metric Female Keyed Shaft (G)

	Option A*							Opti	on G ([OIN 6885	5)**
Model	Α	В	С	D	E	R	A H7	B P9	C +.04	D	Е
HTR.9 HTR1.8	.625 .626	.187 .189	.709 .719	2.94	1.00	.030	16	5	20.6	74.6	25.4
HTR3.7 HTR7.5	.875 .876	.187 .189	.964 .974	3.88	1.50	.015	22	6	27.6	98.4	38.1
HTR5 HTR10	1.250 1.252	.250 .252	1.367 1.377	3.88	1.78	.030	32	10	38.6	98.4	44.5
HTR15 HTR30	2.000 2.003	.500 .502	2.223 2.233	4.94	2.88	.030	48	14	55.6	125.4	73.0
HTR22 HTR45	2.000 2.003	.500 .502	2.223 2.233	4.94	2.88	.030	48	14	55.6	125.4	73.0
HTR75 HTR150	2.750 2.755	.750 .753	3.032 3.042	7.44	3.75	.030	72	20	81.8	188.9	95.2
HTR300 HTR600	5.000 5.005	1.250 1.252	5.366 5.376	11.94	6.50	.030	125	32	139.8	303.2	165.1


Female Splined Shaft (D, L)

 30° involute splined female shafts available for HTR300/600. Consult factory.

	Option D (10B Spline)*						Option L (DIN/ISO 14)**				No. of
Model	Α	В	С	D	Е	Α	В	С	D	Е	Splines
HTR.9 HTR1.8	.656	.625	.625	.538	.098	17	16	16	13	3.5	6
піні.			.624	.537	.096						
HTR3.7 HTR7.5	.906	.875	.875 .876	.753 .752	.137 .135	23	22	22	18	5	6
HTR5 HTR10	1.156	1.250	1.125 1.124	.968 .967	.176 .174	29	29	28	23	6	6
HTR15 HTR30	2.031	2.000	2.000 1.998	1.720 1.718	.312 .309	49	50	48	42	8	8
HTR22 HTR45	2.031	2.000	2.000 1.998	1.720 1.718	.312 .309	49	50	48	42	8	8
HTR75 HTR150	3.031	3.000	3.000 2.998	2.580 2.578	.468 .465	73	76	72	62	12	8

Male Splined Shaft (E, M)

 30° involute splined male shafts available for HTR300/600. Consult factory.

* Dimensions in inches ** Dimensions in mm

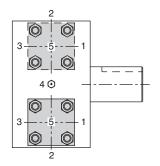
	0	Option E (10B Spline)*					ion M	4)**	No. of		
Model	Α	В	С	D	Е	Α	В	С	D	Е	Splines
HTR.9 HTR1.8	1.312	.875	.873 .872	.747 .742	.134 .133	33	22	22	18	5	6
HTR3.7 HTR7.5	1.875	1.250	1.248 1.246	1.069 1.064	.192 .191	48	28	28	23	6	6
HTR5 HTR10	2.625	1.750	1.748 1.746	1.499 1.494	.270 .269	66	44	42	36	7	8
HTR15 HTR30	3.375	2.250	2.247 2.245	1.928 1.923	.347 .346	86	58	54	46	9	8
HTR22 HTR45	3.375	2.250	2.247 2.245	1.928 1.923	.347 .346	86	58	54	46	9	8
HTR75 HTR150	4.500	3.000	2.997 2.995	2.573 2.568	.464 .463	115	76	72	62	12	8

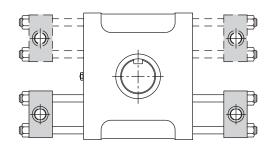
1800_HTR.pmd, M&A

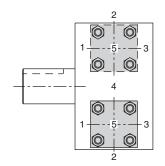
-

Options

Port Sizes and Positions


The standard port styles for HTR Series rotary actuators are SAE and BSP (parallel) port, but NPTF, flanged and metric port styles to DIN 3852/1 and ISO 6149/1 are also available. The relevant sizes of port for each model of rotary actuator are shown.


Ports will be supplied in position 1, as shown in the diagram, unless a different position is specified on the order. Ports are available in positions 2, 3, and 4 at no extra cost; position 5 is available as an extra cost option.


Air Bleeds

These may be fitted in end cap positions unoccupied by ports or cushions Specify location in clear text.

Port Locations

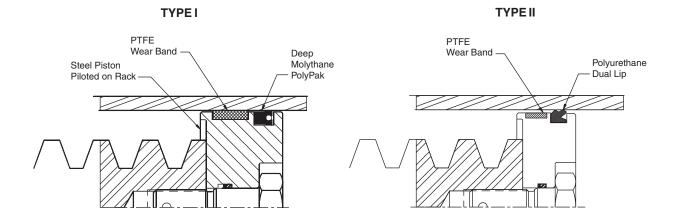
NOTE:

- 1. Port position 1 is standard.
- 2. Port position 2, 3 and 4 are standard options available at no additional cost.
- 3. Port position 5 is available at additional cost; not available with stroke adjusters.

Port Types and Sizes

Model	Standard SAE Straight Thread (1)	Code 61 SAE Flange (3)	NPT (2) BSPP (4)	Metric DIN (5)* or ISO (6)
HTR.9 HTR1.8	⁹ /16 - 18 (SAE 6)	N/A	1/4	M14 x 1.5
HTR3.7 HTR7.5	⁹ /16 - 18 (SAE 6)	N/A	1/4	M14 x 1.5
HTR5 HTR10	⁹ /16 - 18 (SAE 6)	N/A	1/4	M14 x 1.5
HTR15 HTR30	³ /4 - 16 (SAE 8)	Consult Factory	1/2	M22 x 1.5
HTR22 HTR45	³ /4 - 16 (SAE 8)	Consult Factory	1/2	M22 x 1.5
HTR75 HTR150	1 ¹ / ₁₆ - 12 (SAE 12)	3/4	3/4	M27 x 2
HTR300 HTR600	1 ⁵ /16 - 12 (SAE 16)	1	1	M33 x 2

^{*} DIN 3852/1

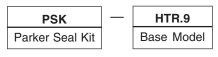

^{**} ISO 6149/1 (Not available with HTR.9 or HTR1.8)

Options

Seal Materials (V,W)

Effective filtration is vital to the long life and satisfactory performance of a rotary actuator. If the piston seals of a rack and pinion rotary are worn or damaged, fluid which leaks past the piston will enter the gear housing.

In the event of internal leakage into the gear housing, the pressure relief valve protects the shaft seal.


Seal Class	Seal Type	Wear Ring Type	Fluid Medium	Temperature Range	Pressure Range	Filtration
Standard Type I*	Molythane PolyPak	Filled PTFE	General purpose, Petroleum-based fluids	-40°F to 180°F -40°C to 82°C	3000 psi 207 bar	Minimum
Standard Type II**	Polyurethane Dual Lip	Filled PTFE	General purpose, Petroleum-based fluids	-40°F to 180°F -40°C to 82°C	3000 psi 207 bar	ISO Class 17/14
Fluorocarbon (V)	Viton	Filled PTFE	High Temperature and/or Synthetic Fluids	-20°F to 250°F -29°C to 121°C	3000 psi 207 bar	Cleanliness Level
Nitrile (W)	Carboxilated Nitrile	Filled PTFE	Water Glycol, High Water Content Fluids	30°F to 180°F 0°C to 82°C	2000 psi 138 bar	

^{*} Standard on HTR.9/1.8, 3.7/7.5, 5/10

Seal Kit Ordering Information

- Standard units are equipped with nitrile seals.
- Optional seal compounds are available.
- See parts list for items contained in seal kits.
- Seal kit part numbers as follows:

NOTE: The seal kit is equipped with parts necessary to re-seal Design Series "A", "B" or "C" HTR Series rotary actuators. If the actuator model number ends in C###, call factory for seal kit part number.

V
Omit = Nitrile Seals (STD)
V = Fluorocarbon Seals
W = Carboxilated Nitrile
Piston Seals

^{**} Standard on HTR15/30, 22/45, 75/150 and 300/600

1.38

HTR45

HTR75

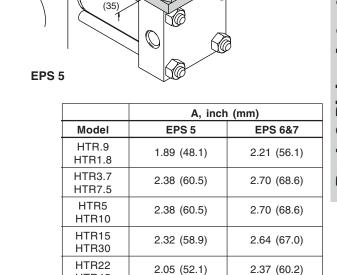
HTR150

HTR300

 \mathcal{O}

Ориона

Proximity Switches (Namco Cylindicators or Balluff Cylinder Indicator Sensor)


The inductive type proximity switch provides end of rotation indication. The non-contact probe senses the presence of the ferrous cushion spear and has no springs, plungers, cams or dynamic seals that can wear out or go out of adjustment. The switch is solid state and meets NEMA 1, 12 & 13 specifications. For ease of wiring the connector housing is rotatable through 360°. To rotate, lift the cover latch, position and release.

The switch make/break activation point may occur at 0.125" to ± 0.125 " from the end of stroke. Depending on the actuator size, this distance may cause activation at 2° to 15° from end of stroke.

The standard proximity switch controls 50-230 VAC/DC loads from 5 to 500 mA. The low 1.7 mA off-state leakage current can allow use for direct PLC input. The standard short circuit protection (SCP) protects the switch from a short in the load or line upon sensing such a condition (5 amp or greater current) by assuming a non-conductive mode. The fault condition must be corrected and the power removed to reset the switch preventing automatic restarts.

The low voltage DC switch is also available for use with 10-30 VDC. The switch is in a non-rotatable housing, but does incorporates the short circuit protection.

Both switches are equipped with two LEDs, "Ready" and "Target". The "Ready" LED is lit when power is applied and the cushion spear is not present. The "Target" LED will light and the "Ready" LED will go out when the switch is closed, indicating the presence of the cushion spear. Both LEDs flashing indicates a short circuit condition.

1.55 (39.4)

3.14 (79.8)

1.87 (47.5)

3.45 (87.6)

0.48

(12)

(39)

	HTR600	3.14 (79.8)	3.45 (87.6)
ion		A	A
EPS 6		EPS 7	160

Order proximity sensors separately. See Sensors section for specifications and ordering information.

NOTES:

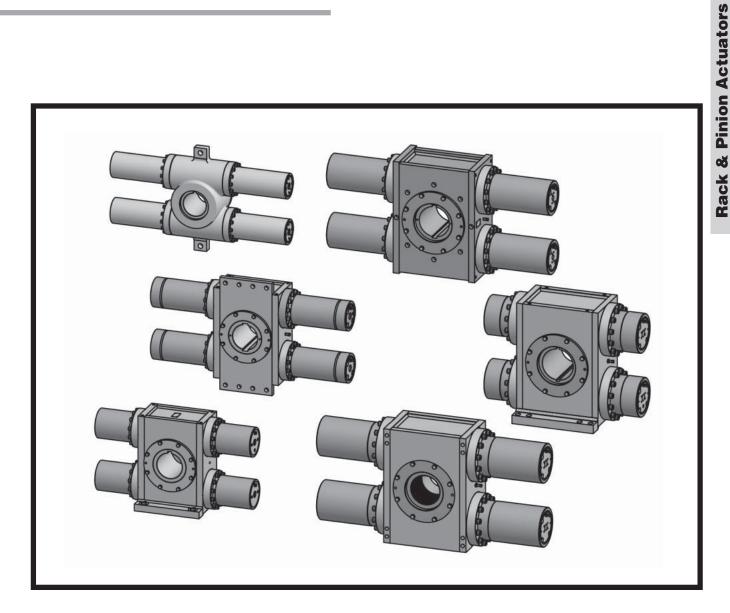
- 1. Available with or without cushions.
- 2. Not available with stroke adjusters.
- 3. Pressure rating: 3000 psi
- 4. Operating temperature: -4°F to 158°F
- Specify switch type, orientation and voltage when ordering.
- The low voltage DC switch is available in nonrotatable style only, consult representative for further information.

Feedback Packages

Feedback packages available for use with HTR Series rotary actuators include:

- · Precision feedback potentiometer (J)
- Precision resolver feedback (H)
- Linear potentiometer feedback (Oildvne Teknar)
- LDT feedback (MTS Temposonics)

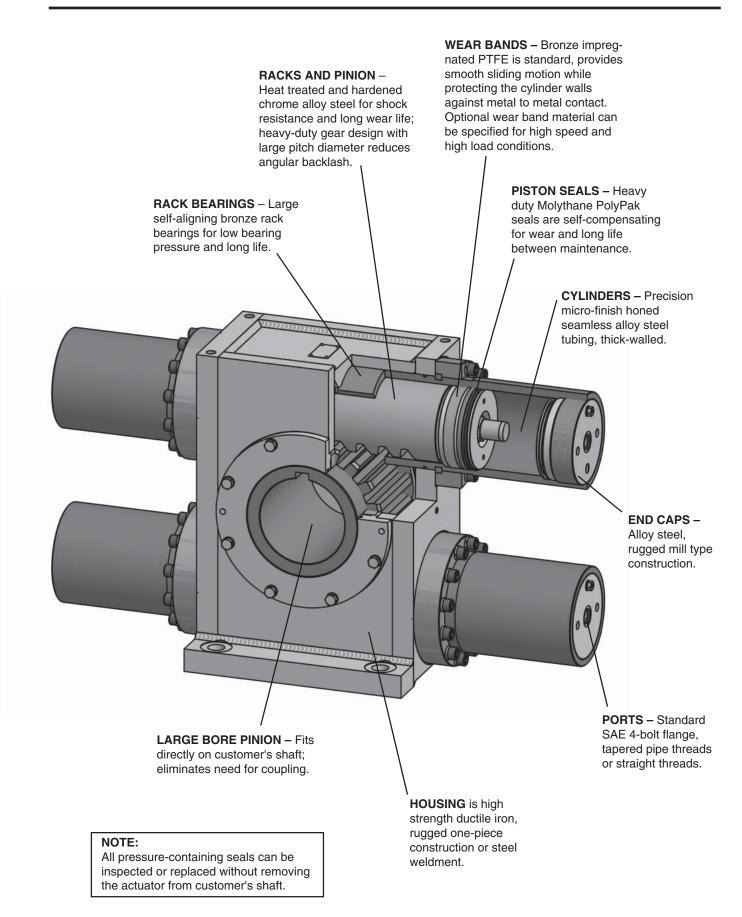
The feedback potentiometer (J) and resolver feedback (H) may be ordered as part of the model code. The other options must be ordered separately as specials. See Sensors section for specifications.


HTR.pmd, M&A

M Series

Heavy Duty Mill Series Rotary Actuators

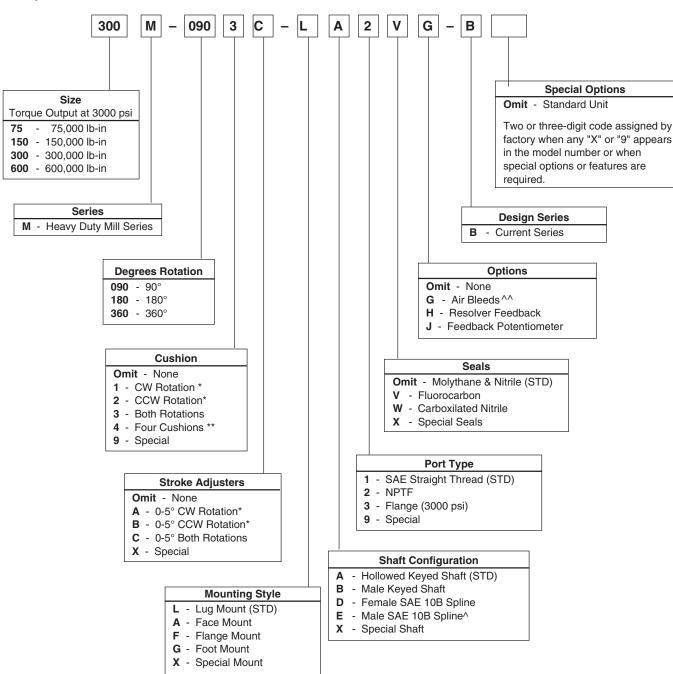
Coı	ntei	nts
-----	------	-----


Features	
Ordering Information	3
Specifications	
Engineering Data	6-7
Dimensional Data	8-10
Options	
Cushions	11
Stroke Adjusters	11

Options	(cont)
B 4	4.5

Mounting	12-13
Shafts	14
Ports	15
Spale	15

1800_MSeries.pmd, M&A



Ordering Information

Model Code and Ordering Information

Example: 300M-0903C-LA2VG-B

^{^^} Std. on models larger than 1000M

^{*} Viewed from Shaft End

^{**} Double Rack Models Only

[^] Not available with 300M or 600M actuators. A 39T involute spline shaft is available.

M Series Heavy Duty Mill Rotary Actuator

Designed to meet steel mill specifications. These non-tie rod units incorporate a range of features to provide heavy duty service dependability. The larger than normal heat treated pinions provide low tooth contact pressures and permit hollow shaft configurations with bore sizes capable of transmitting full operating torques, including shock loadings. In order to negate the chances of galling or scoring of the cylinder barrels, the Series M units are fitted with wear ring bushings that provide full support and eliminate the possibility of contact between cylinder and piston. The use of large diameter, tapered roller bearings on the pinion permit the actuator to absorb considerable thrust, radial and overhung loads. For ease of maintenance, all pressure seals on Series M can be inspected or replaced without removing the actuator from the customer's shaft. To ensure shipment of only the highest quality product, each actuator is fully tested and has an individual test sheet completed before final painting and shipment.

SPECIFICATIONS

■ Maximum operating pressure: 3000 psi (207 Bar) hydraulic

■ Standard rotations: 90°, 180°, 360° ■ Rotational tolerances: -0°, +2°

■ Output torques @ 3000 psi (207 Bar): 75,000 lb-in to 50,000,000 lb-in

■ Maximum breakaway pressure: 75 psi (5 Bar)

■ Operating temperature:

Standard nitrile seals -40° to 180°F (-40° to 82°C) Fluorocarbon seals -20° to 250°F (-29° to 121°C)

■ Mounting orientation: Unrestricted

■ Timing: Keyway located at 12:00 position at midstroke of actuator

■ Housing:

Heavy duty ductile iron (units up to 1000M), steel weldments (units larger than 1000M)

M	odel	Maximum		Output Torque pecified Press		Max. Angular	Standard	Displacement	Standard
Single Rack	Double Rack	Pressure Rating, psi	1000 psi (68 Bar)	2000 psi (136 Bar)	3000 psi (204 Bar)	Backlash (Minutes)	Rotation Degrees	(Cubic Inches)	Unit Weigh (lb)
75M		3,000	25,000	50,000	75,000	15	90 180 360	43.4 86.9 174.0	202 217 259
	150M	3,000	50,000	100,000	150,000	15	90 180 360	86.9 174.0 347.0	301 331 415
300M		3,000	100,000	200,000	300,000	10	90 180 360	176.0 351.0 703.0	648 727 881
	600M	3,000	200,000	400,000	600,000	10	90 180 360	351.0 703.0 1,405.0	1033 1191 1499
	1,000M	3,000	333,000	667,000	1,000,000	10	90 180 360	556.0 1,112.0 2,224.0	1526 1774 2294
	1,500M	3,000	500,000	1,000,000	1,500,000	10	90 180 360	833.0 1,666.0 3,332.0	2100 2500 3300
	2,000M	3,000	667,000	1,333,000	2,000,000	10	90 180 360	1,248.0 2,496.0 4,992.0	3800 4480 5850
	3,000M	3,000	1,000,000	2,000,000	3,000,000	10	90 180 360	1,727.0 3,454.0 6,908.0	4900 5700 7300
	4,000M	3,000	1,333,000	2,667,000	4,000,000	10	90 180 360	2,389.0 4,778.0 9,556.0	Consult Factory
	5,000M	3,000	1,667,000	3,333,000	5,000,000	10	90 180 360	2,937.0 5,874.0 11,748.0	Consult Factory
	6,000M	3,000	2,000,000	4,000,000	6,000,000	10	90 180 360	3,552.0 7,104.0 14,208.0	Consult Factory
	7,000M	3,000	2,333,000	4,667,000	7,000,000	10	90 180 360	3,910.0 7,820.0 15,640.0	Consult Factory
	8,000M	3,000	2,667,000	5,333,000	8,000,000	10	90 180 360	4,640.0 9,280.0 18,560.0	Consult Factory
	9,000M	3,000	3,000,000	6,000,000	9,000,000	10	90 180 360	5,020.0 10,040.0 20,080.0	Consult Factory
	10,000M	3,000	3,333,000	6,667,000	10,000,000	10	90 180 360	5,840.0 11,680.0 23,360.0	Consult Factory
	15,000M	3,000	5,000,000	10,000,000	15,000,000	10	90 180 360	8,710.0 17,420.0 34,840.0	Consult Factory
	20,000M	3,000	6,667,000	13,333,000	20,000,000	10	90 180 360	11,476.0 22,952.0 45,904.0	Consult Factory
	25,000M	3,000	8,333,000	16,667,000	25,000,000	10	90 180 360	14,262.0 28,524.0 57,048.0	Consult Factory
	30,000M	3,000	10,000,000	20,000,000	30,000,000	10	90 180 360	17,815.0 35,630.0 71,260.0	Consult Factory
	40,000M	3,000	13,333,000	26,667,000	40,000,000	10	90 180 360	23,687.0 47,374.0 94,748.0	Consult Factory
	50,000M	3,000	16,667,000	33,333,000	50,000,000	10	90 180 360	27,369.0 54,738.0 109,476.0	Consult Factory

1800_MSeries.pmd, M&A

Kinetic Energy Capacity

The energy values below assume drive pressure is maintained through cushion stroke.

Single Rack Units with Single Set of Cushions (20°)

	Kinetic Energy Rating(in-lb) of Cushion at Specified Drive Pressure*													
Model	0 psi 500		500 psi 1000 psi		1500 psi		2000 psi		2500 psi		3000 psi			
	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
75M	26175	14245	21812	14245	17448	14245	13088	13088	8724	8724	4362	4362	0	0
300M	194700	54400	87247	54400	69793	54400	52350	52350	34897	34897	17449	17449	0	0

Double Rack Units with Single Set of Cushions (20°)

		Kinetic Energy Rating(in-lb) of Cushion at Specified Drive Pressure*												
Model	0 psi 500 psi		00 psi	1000 psi		1500 psi		2000 psi		2500 psi		3000 psi		
	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
150M	26175	14245	17450	14245	8727	8727	0	0	0	0	0	0	0	0
600M	104700	54400	69801	54400	34907	34907	0	0	0	0	0	0	0	0
1000M	174500	97107	116336	97107	58178	58178	0	0	0	0	0	0	0	0

Double Rack Units with Double Set of Cushions (20°) **

				Kine	tic Ener	gy Rating(ir	n-lb) of C	ushion at S	pecified	Drive Press	ure*			
Model	0 psi 500 psi		00 psi	1000 psi		1500 psi		2000 psi		2500 psi		3000 psi		
	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
150M	52350	30168	43623	30168	34879	30168	26175	26175	17448	17448	8725	8725	0	0
600M	209400	115216	174493	115216	139586	115216	104700	104700	69793	69793	34899	34899	0	0
1000M	349000	194215	290822	194215	232643	194215	174500	174500	116322	116322	58164	58164	0	0

* Must deduct work (energy) done to overcome potential energy effects of load. $W_{PE} = T_{PE} \times \theta$, where θ is in radians.

Cushion Deceleration Control

The cushion causes the resisting torque that can be used to decelerate a rotational load. Please note the cushion has to provide enough resistance to control: drive torque caused by the hydraulic system pressure; plus the torque caused by gravity pulling on the rotational load; and the kinetic energy associated with the motion of the inertia load. Since the actuator's cushion has to be able to control the sum of all three torque factors, we suggest including cushion capacity as one of the actuator's selection criteria.

It is strongly suggested that proportional valves be used instead of cushions to control (decelerate) high inertial loads. This provides the ability to reduce inlet pressure while generating deceleration pressure. It also allows for longer ramp times, thus increasing deceleration stroke.

SUPPLEMENTAL INFORMATION KINETIC ENERGY BASIC FORMULA

KE =
$$1/2 J_m \omega^2$$

 $\omega = 0.0175 \times \frac{2\Theta_A + \Theta_C + 2\Theta_D}{\text{Rotation Time (sec.)}}$

where:

KE = Kinetic Energy (in-lb)

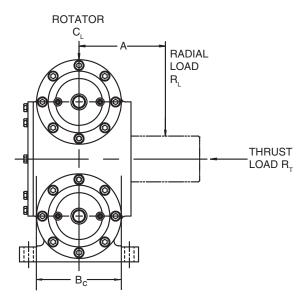
J_m = Rotational Mass Moment of Inertia (in-lb-sec²)

ω = Peak Velocity (rad/sec)
 (Assuming trapezoidal velocity profile)
 See page 8 or the LTR Section for formulas.

 Θ_A = Acceleration Angle (deg)

 Θ_{C} = Constant Velocity Angle (deg)

 Θ_D = Deceleration Angle (deg)

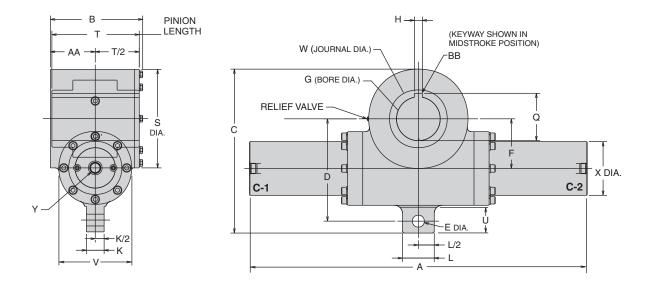

^{**} Extreme care must be exercised so that both cushions are adjusted equally for each direction or dangerous pressure intensification and gear train stresses could result. (Suggest high performance cushion option.)

Engineering Data

Bearing Load Capacities

Each M Series Actuator is fitted with heavy duty tapered roller bearings as standard and can support high external loads. The table provides load capacities for each unit.

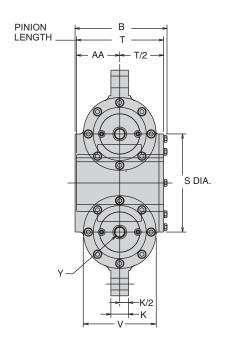
Any distance "A" possible as long as bearing limits are observed. See overhung moment equation.

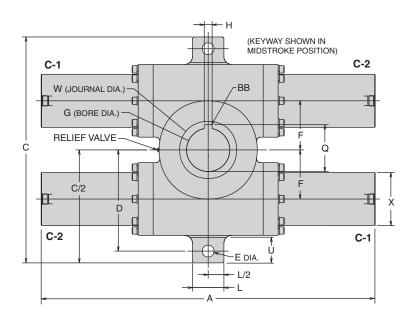

	BEARING CAPACITIES "M" SERIES ROTATOR											
	Radial Load-lbs. Thrust Load-lbs. Center		Bearing Center (B _c) Distances	Inch	g Moment, I-lbs. + B _c /2)							
Model	Dynamic	Static	Dynamic	Static	Inch	Dynamic	Static					
75M	34,000	51,000	15,000	22,500	3.40	115,600	173,400					
150M	42,000	63,000	15,000	22,500	3.40	142,800	214,200					
300M	42,000	63,000	20,000	30,000	5.65	237,300	355,950					
600M	57,000	85,500	20,000	30,000	5.65	322,050	493,075					
1000M	50,000	75,000	20,000	30,000	7.40	370,000	555,000					

Unit Weights

			Rotat	ion		
Model	9	0°	180	0	360)°
	lb	kg	lb	kg	lb	kg
75M	202	92	217	99	259	118
150M	301	137	331	150	415	188
300M	648	294	727	330	881	400
600M	1033	469	1191	541	1499	681
1000M	1526	693	1774	805	2294	1041
1500M	2100	953	2500	1135	3300	1498
2000M	3800	1725	4500	2043	5900	2679
3000M	4900	2225	5700	2588	7300	3314

Single Rack with Standard Lug Mount (L) and Hollow Keyed Shaft (A)


Model	Rotation Degrees	A	В	C (+.13,00)	D	E	F	G	к	L (+.13,00)	Q
	90	24.50									
75M	180	34.50	8.00	14.25	8.63	1.000	4.13	3.500	1.50	3.00	3.840
	360	55.50						3.505			
	90	34.25									
300M	180	48.50	11.88	20.63	12.88	1.500	6.25	5.500	2.25	4.00	5.960
	360	76.75						5.505			
	Rotation		S			٧					
Model	Degrees	Н	(+.13,00)	T	U	(+.25,00)	W	X	Υ	AA	BB
75M	90, 180, 360	.750 .753	9.25	7.50	2.13	6.00	5.00	4.00	1 1/16-12 SAE #12	3.81	.030
300M	90, 180, 360	1.000 1.003	12.50	11.25	3.25	9.25	7.25	6.75	1 5/16-12 SAE #16	5.96	.032


Note: All dimensions in inches unless otherwise specified.

1800_MSeries.pmd, M&A

Double Rack with Standard Lug Mount (L) and Hollow Keyed Shaft (A)



Dimensions

Sizes from 150 to 1000 lb-in

Model	Rotation Degrees	Α	В	C (+.13,00)	D	E	F	G	н	К	L (+.13,00)	Q
	90	24.50										
150M	180	34.50	8.00	19.25	8.63	1.000	4.13	3.500	0.750	1.50	3.00	3.840
	360	55.50						3.505	0.753			
	90	34.25										
600M	180	48.50	11.88	28.75	12.88	1.500	6.25	5.500	1.000	2.25	4.00	5.960
	360	76.75						5.505	1.003			
	90	40.25										
1000M	180	57.00	13.88	32.50	14.75	1.500	7.25	7.250	1.000	2.25	4.00	7.725
	360	90.50						7.255	1.002			
			S			٧						
Model	Rotation D	egrees	(+.13,00)	T	U	(+.25,00)	W	Х	,	Y	AA	BB
150M	90, 180	, 360	9.25	7.50	2.13	6.00	5.00	4.00		16-12 : #12	3.81	0.030
600M	90, 180	, 360	12.50	11.25	3.25	9.25	7.25	6.75		16-12 : #16	5.69	0.032
1000M	90, 180	, 360	14.50	12.00	3.25	10.25	9.13	7.75		16-12 : #16	6.75	0.060

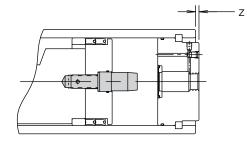
Dimensional Data

Double Rack with Standard Lug Mount (L) and Hollow Keyed Shaft (A)

Dimensions* Sizes from 1500 to 50000 lb-in

Model	Rotation Degrees	Α	В	C	D	Е	F	G	н	K
	90	44							1 1/4	
1,500M	180	62	16 ¹ /2	35	16	1 ¹ /2	8 ¹ /4	8	х	2 ¹ /4
	360	101 ¹ /2	1						13 ¹ /2	
	90	48							1 ¹ /2	
2,000M	180	70	19	41 ¹ /4	18 ⁷ /8	1 ³ /4	93/8	91/2	х	2 ¹ /4
	360	114							14 ¹ /2	
	90	48 ¹ /2							1(2)	
3,000M	180	70 ¹ / ₂	21	45 ³ /4	20 ⁷ /8	2	10 ¹ /8	93/4	X	3
	360	114 ¹ /2	1						16	
	90	54							1 ¹ /2	
4,000M	180	79	231/2	51 ¹ /4	233/8	21/4	11 ³ /8	11 ¹ /4	x	31/2
	360	129	1						18 ¹ /2	
	90	55							1 ¹ /2	
5,000M	180	80 ¹ /2	25	54 ³ /4	25 ¹ /8	21/4	125/8	12 ¹ /2	x	31/2
•	360	130 ¹ /2	1						18 ¹ /2	
	90	63 ¹ /2							1 ³ /4	
6,000M	180	95	25 ¹ /2	57 ¹ /2	26 ¹ /4	21/2	13	13 ¹ /2	x	33/4
*	360	158	1						21 ¹ /2	
	90	74 ¹ /2							2	
7,000M	180	109 ¹ /2	26 ¹ /2	61 ¹ /2	28	23/4	14	15	x	4
,	360	179							22	
	90	76							2 ¹ /4	
8,000M	180	114	26 ¹ /2	63 ³ /4	29 ¹ /4	2 ³ /4	15	16	X	4
-,	360	190				_,.			22	
	90	80							21/2	
9,000M	180	121	26 ¹ /2	67	30 ¹ /2	3	16	18	X	4 ¹ /2
-,	360	203						.0	18 ¹ /2	.,_
	90	85							21/2	
10,000M	180	129	28	69	31 ¹ /2	3	17	20	X	4 ¹ /2
,	360	217							22	.,_
	90	102							21/2	
15,000M	180	159	28	82	37 ¹ /2	31/2	21 ¹ /2	22	X	5
. 0,000	360	272		"-	0. 72	0 / 2	,_		22	
	90	110							21/2(2)	
20,000M	180	173	29	87	39 ¹ / ₂	4	231/2	31	X	5
_0,000	360	298 ¹ /2			00 /2		20 /2		22	
	90	110							21/2(2)	
25,000M	180	173	30 ¹ /2	95	42 ¹ /2	5	24 ¹ /2	31	X	5
0,000	360	298¹/2	00 /2		,		, _		26	
	90	112							21/2(2)	
30,000M	180	175	32 ¹ /2	98	44	5	25	31	x	5
55,000ivi	360	300 ¹ / ₂	02 /2		''			0.	28	
	90	132							3(2)	
40,000M	180	2071/2	36	108	49	5	28 ¹ / ₂	38	X	6
. 5,000 (1)	360	358	1 00				20 /2	00	30	6
	90	133							3(2)	
50,000M	180	209	37	111	501/2	5	291/4	38	X	6
55,000ivi	360	359 ¹ / ₂	37	111	1 501/2	3	5 291/4	00	32	
	550	00972							UZ	

^{*} Units 1500M and above have dimensions that are subject to change. Consult factory on these dimensions before any design implementation is initiated.

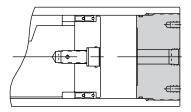

Options

Cushions (1, 2, 3, 4)

The standard cushions operate over the last 20° of rotation in either or both directions. A floating bushing ensures no binding of cushion spear. For severe operating conditions, 4 cushions should be fitted on double rack units.

All cushions are fully adjustable. Double rack units should be fitted with Type 4 cushions.

NOTE: Proportional valves are recommended instead of cushions for high inertial loads.

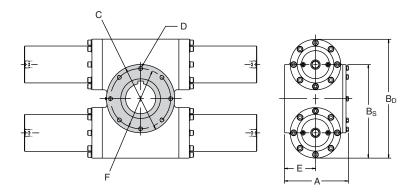

Model	Z
75M	.50
150M	.50
300M	.25
600M	.25
1000M	.00

	Cushion Kinetic Energy Capacity											
Model Cushion Dissipation Cushion Cushion Work (Inch lbf) Code (in-lb)												
75M	3	27,630	1,2	27,165								
150M	4	55,300	1,2,3	27,165*								
300M	3	84,190	1,2	104,700								
600M	4	168,370	1,2,3	104,700*								
1,000M	4	192,000	1,2,3	192,000*								

^{*} Must deduct work done by any existing drive pressure and work done to control potential energy.

5° Stroke Adjusters (A, B, C)

Model	(1) Turn Adj.
75M 150M	1°
300M 600M	8°
1000M	7°


NOTE

- Maximum unit rotation is equal to rotation specified in model code. Adjusters allow rotational positioning equal to or less than the maximum rotation.
- Stroke adjusters are available with or without cushions. Double rack units will have cushions and stroke adjusters on lower rack.

Face Mounting (A)

Model	Torque lb-in @ 3,000 psi	А	B _s	B _D	С	D	E	F
75M	75,000	8	11.75	N/A	9.25	5/8-18 x 15/16 DP	3.81	8.000
150M	150,000	8	N/A	14.25	9.25	5/8-18 x 15/16 DP	3.81	8.000
300M	300,000	11-7/8	17.13	N/A	12.50	3/4-16 x1-1/8 DP	5.69	11.000
600M	600,000	11-7/8	N/A	21.75	12.50	3/4-16 x1-1/8 DP	5.69	11.000
1,000M	1,000,000	13-5/8	N/A	24.75	14.50	1-1/4-12 x 1-7/8 DP	6.75	12.000

Face Mounting Bi-directional Torque Capacity

(without dowel devices)

Model	Bolt Size	Suggested Bolt Torque (lb - ft)	Bi-Directional Torque Capacity* (lb - in)
75M	5/8-18 x 15/16 dp	100	105,495
150M	5/8-18 x 15/16 dp	100	105,495
300M	3/4-16 x 1-1/8 dp	160	167,200
600M	3/4-16 x 1-1/8 dp	160	167,200
1,000M	1-1/4-12 x 1-7/8 dp	720	496,800

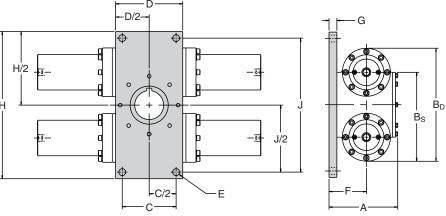
^{*} With additional reinforcement.

Bi-directional bolt torque capacity is equal to:

 $\boldsymbol{\mu} \ \boldsymbol{x} \ \text{clamp load} \ \boldsymbol{x} \ \text{lever arm length from center of rotation}$

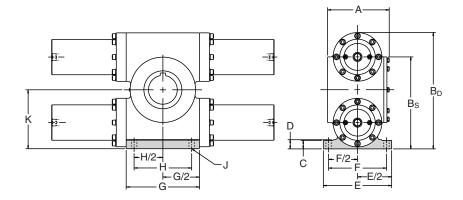
 $(\mu = .3 \text{ assumed}).$

Suggested Reinforcement


Model	Dowel Ø	Qty.	Bolt Circle Diameter
150M	.75	2	8
300M	.75	4	11
600M	1.00	4	11
1,0000M	1.00	8	12

Options

Flange Mounting (F)
In addition to the flange shown, made to order sizes can be manufactured.



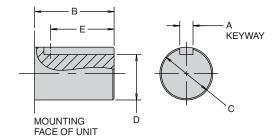
Model	Torque lb-in @ 3000 psi	A	B _s	B _D	С	D	E	F	G	Н	J
75M	75,000	9-1/4	11.75	N/A	7.500	9.500	1.063	5.06	1.25	19.25	17.250
150M	*	9-1/4	N/A	14.25	7.500	9.500	1.063	5.06	1.25	19.25	17.250
300M	*	13-3/8	17.13	N/A	10.250	12.750	1.313	7.19	1.50	28.00	25.500
600M	*	13-3/8	N/A	21.75	10.250	12.750	1.313	7.19	1.50	28.00	25.500
1,000M	*	15-3/8	N/A	24.75	11.500	16.750	1.563	8.50	1.75	32.25	29.250

^{*} Consult factory with applications data.

Foot Mounting (G)

The foot is an integral part of the housing, machined on all sides to accommodate shear block mounting. (1,000M & smaller).

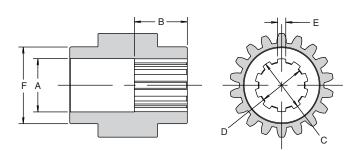
Model	Torque Ib-in @ 3000 psi	A	B _s	B _D	С	D	E	F	G	Н	J	К
75M	75,000	8	12.00	N/A	1.38	1.50	11.00	9.500	10.00	7.500	.781	7 275 +0.005
150M	150,000	8	N/A	14.50	1.38	1.50	11.00	9.500	10.00	7.500	.781	7.375 +0.003
300M	300,000	11-7/8	17.50	N/A	1.63	1.75	13.00	11.000	14.00	11.000	1.031	11.250 +0.005
600M	600,000	11-7/8	N/A	22.13	1.63	1.75	13.00	11.000	14.00	11.000	1.031	-0.000
1,000M	1,000,000	13-7/8	N/A	25.13	1.88	2.00	16.00	13.500	16.75	13.500	1.281	12.750 ^{+0.000} _{-0.005}



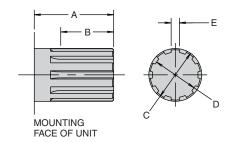
Shaft Options (B, D, E)

All shaft options shown in mid-stroke position.

Male Keyed Shaft (B)


Model	Α	В	С	D	E	Torque Rating
75M 150M	.749 .750	4.50	3.000 2.999	2.577 2.572	3.38	102,000 lb-in
300M 600M	1.249 1.250	7.50	5.000 4.999	4.297 4.292	6.00	475,000 lb-in
1000M	2.000 2.002	12.00	8.000 7.999	6.873 6.868	10.00	1,000,000 lb-in

Suggested Key Materials								
Model A E Material								
75M	0.750/0.749	3.38	C1018 CR					
150M	0.750/0.749	3.38	C1045 CR					
300M	1.250/1.249	6	C1018 CR					
600M	1.250/1.249	6	C1018 CR					


Female SAE 10B Spline (D)

Model	Α	В	С	D	Е	F	
75M 150M	3.03	3.00	3.000 2.998	2.580 2.578	0.468 0.465	4.999 4.997	
300M 600M	39T, 30° involute splined shaft is available.						
1000M			Cons	sult factory			

Male SAE 10B Spline (E)

Model	Α	В	С	D	E
75M	4.50 2	2.88	2.997	2.573	0.464
150M	4.50	2.00	2.995	2.568	0.463
300M					
600M			T, 30° in		
1000M			onsult fac	available. ctory.	

Note: All dimensions in inches unless otherwise specified.

1800_MSeries.pmd, M&A

Options

Ports (1, 2, 3)

SAE straight thread ports or 4 bolt flanges are recommended for all applications. NPT ports are available but not recommended.

Model	Standard SAE Straight Thread (1)	NPT (2)	4 Bolt Flange (3) SAE J518 (3000 psi)
75M 150M	1-1/16 -12 (SAE 12)	3/4	3/4
300M 600M	1-5/16 -12 (SAE 16)	1	1
1000M	1-5/16-12 (SAE 16)	1	1

Seals (V, W)

Seal Class	Seal Type	Wear Ring Type	Fluid Medium	Temperature Range	Filtration
Standard	Molythane PolyPak	Filled PTFE	General purpose, petroleum-based fluids	-40°F to 180°F -40°C to 82°C	ISO
Viton (V)	Fluorocarbon	Filled PTFE	High Temperature and/or Synthetic Fluids	-20°F to 250°F -29°C to 121°C	Class 17/14 Cleanliness
Nitrile (W)	Carboxilated Nitrile*	Filled PTFE	Water Glycol, High Water Content Fluids	30°F to 180°F 0°C to 82°C	Level

^{*} Not available in every size. Factory will automatically make appropriate substitutions as necessary.

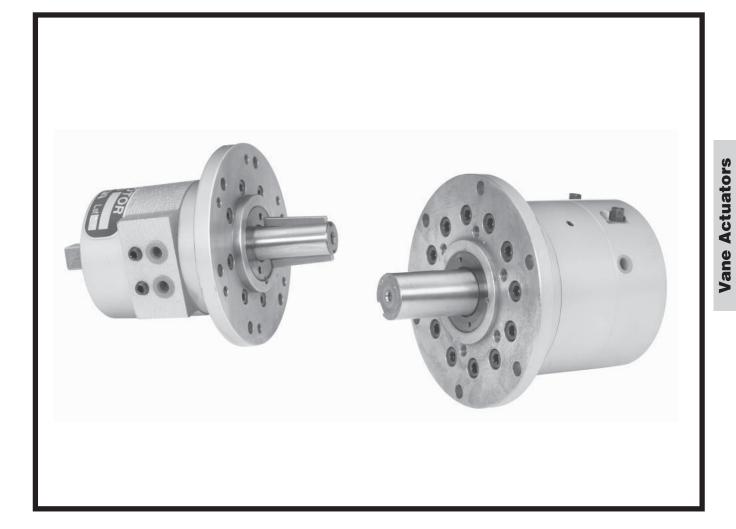
For Seal Kits and Spare Parts, contact the Pneumatic Division at 330-336-3511.

Feedback Packages

Feedback packages available for use with M Series rotary actuators include:

- Precision feedback potentiometer (J)
- Precision resolver feedback (H)
- · Linear potentiometer feedback (Oildyne Teknar)
- LDT feedback (MTS Temposonics)

The feedback potentiometer (J) and resolver feedback (H) may be ordered as part of the model code. The other options must be ordered separately.

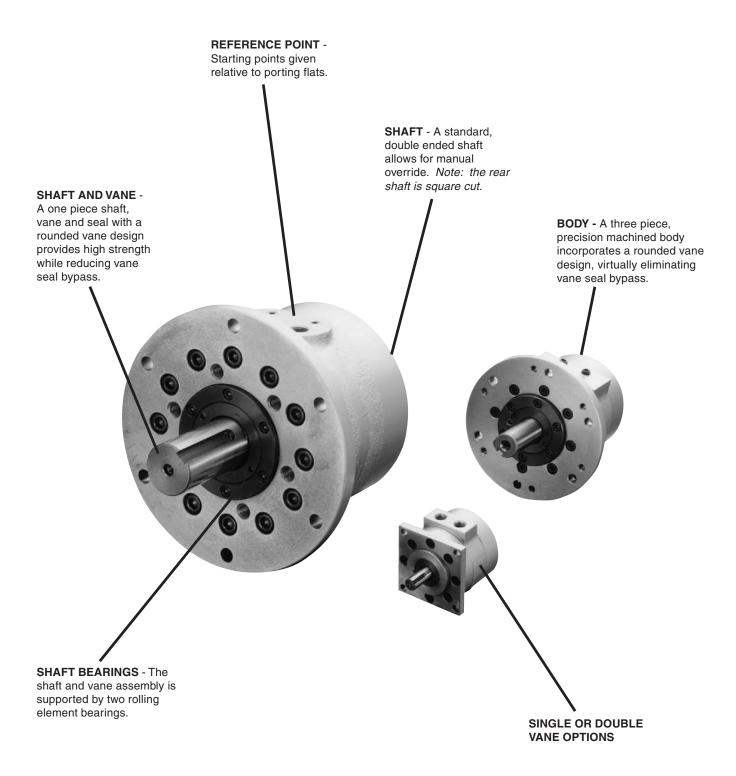

See Sensors section for specifications.

1800 MSeries.pmd, M&A

-Parker

HRN/HRN-C Series Hydraulic Vane Rotary Actuators

Contents


RN Series	
Features	2
Ordering Information	4
Engineering Data / Specifications	5
Dimensions	6

HRN-C Series

Features	10
Ordering Information	12
Engineering Data/Specifications	13
Dimensions	15
(evs	18

1800_HRN.pmd, M&A

HRN Series

The HRN Series incorporates a rounded vane design, which provides lower vane seal bypass. The shaft and vane are machined from high strength alloy steel as one piece. The vane seal is molded in a pre-machined groove in order to provide a one piece shaft, vane, and seal assembly for long life and reliability. The standard rear output shaft provides for an easily accessible manual override in the event that hydraulic pressure is lost.

Available options include rotations of 90 degrees and 270 degrees depending on whether the unit is arranged as a double vane or single vane configuration. Reference points (or keyway timing) are provided relative to the port positioning. Large, convenient, front flange with precision pilot diameter allows for concise mounting and easy integration with the customer's application.

Specifications

• Rated Operating Pressure: 7 MPa (1000 psi) • Minimum Operating Pressure: 1 MPa (145 psi)

• Output Torque @ 7 MPa: 10 to 1960 N•m (89 to 17346 in-lb)

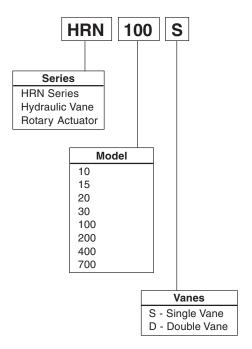
• Standard Rotations: 90° to 270°

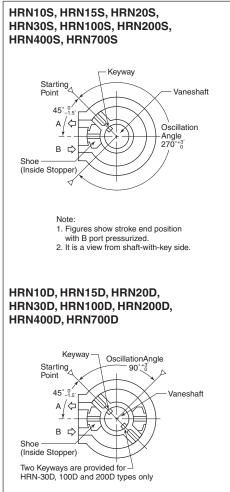
• Operating Temperature Range: 0°C to 60°C (32°F to 140°F) • Filtration Requirement: ISO Class 17/14 Cleanliness Level

• Mounting Orientation: Unrestricted

• Standard Keyway Timing: See Figures for Start Position

Quick Reference Data


			The	Maximum									
Model Number		1.7	5 МРа	3.5	0 MPa	5.00 MPa		7.00 MPa		Breakaway		Unit	
		(250 psi)		(50	(500 psi)		(750 psi)		(1000 psi)		Pressure		Weight
		N•m	(in-lb)	N•m	(in-lb)	N•m	(in-lb)	N•m	(in-lb)	MPa	(psi)	kg	(lb)
	HRN10S	2	(17.7)	4	(35.0)	8	(70.8)	10	(89.0)	1.00	(145)	1.00	(2.21)
	HRN15S	3	(26.6)	8	(70.8)	12	(106.0)	20	(177.0)	1.00	(145)	2.00	(4.41)
	HRN20S	9	(79.7)	13	(115.0)	19	(168.0)	30	(266.0)	1.00	(145)	3.00	(6.62)
Single Vane	HRN30S	12	(106.2)	21	(186.0)	45	(398.0)	60	(531.0)	1.00	(145)	4.30	(9.48)
Siligle valle	HRN100S	20	(177.0)	55	(487.0)	96	(850.0)	123	(1089.0)	1.00	(145)	10.20	(22.49)
	HRN200S	40	(354.0)	133	(1177.0)	210	(1859.0)	314	(2779.0)	1.00	(145)	20.00	(44.10)
	HRN400S	100	(885.0)	200	(1770.0)	420	(3717.0)	539	(4770.0)	1.00	(145)	32.00	(70.56)
	HRN700S	170	(1504.5)	211	(1867.0)	397	(3513.0)	980	(8673.0)	1.00	(145)	41.00	(90.41)
	HRN10D	3	(26.6)	8	(70.8)	12	(106.2)	20	(177.0)	1.00	(145)	1.00	(2.21)
	HRN15D	6	(53.1)	18	(142.0)	27	(239.0)	40	(354.0)	1.00	(145)	2.00	(4.41)
	HRN20D	12	(106.2)	21	(186.0)	45	(398.0)	60	(531.0)	1.00	(145)	3.00	(6.62)
Double Vane	HRN30D	21	(185.9)	49	(434.0)	78	(690.0)	117	(1035.0)	1.00	(145)	4.50	(9.92)
Double valle	HRN100D	30	(265.5)	105	(929.0)	160	(1416.0)	245	(2168.0)	1.00	(145)	10.40	(22.93)
	HRN200D	71	(628.4)	250	(2213.0)	405	(3584.0)	627	(5549.0)	1.00	(145)	20.50	(45.20)
	HRN400D	220	(1947.0)	440	(3894.0)	760	(6726.0)	1078	(9540.0)	1.00	(145)	33.00	(72.77)
	HRN700D	320	(2832.0)	730	(6461.0)	1132	(10018.0)	1960	(17346.0)	1.00	(145)	43.00	(94.82)


Ordering Information

Model Code and Ordering Information

Example: HRN100S

Oscillation Starting Point

1800_HRN.pmd, M&A

Engineering Data / Specifications

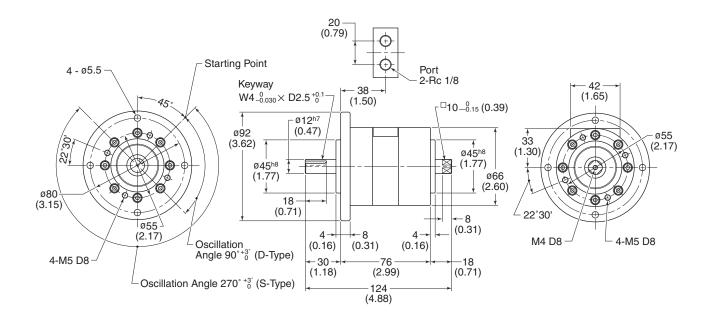
Model No.	Unit Size	HRN10S	HRN15S	HRN20S	HRN30S	HRN100S	HRN200S	HRN400S	HRN700S				
Vane			Single Vane										
Rotation	Degree		270										
Rotational Tolerance	Degree		+3 -0										
Reference Point	Degree		45										
Port Size			Rc 1/8 Rc 1/4 Rc 3/8 Rc										
Minimum Operating	MPa	1.0											
Pressure Range	psi		145.0										
Maximum Operating	MPa	7.0											
Pressure Range	psi	1015.0											
Fluid Tomporatura Danga	°C	0 to 60											
Fluid Temperature Range	°F		32 to 140										
Displacement	cm ³	10.0	17.0	24.0	51.0	111.0	221.0	435.0	780.0				
Internal Bypass Leakage at 40°C	cm³/min	10.0	15.0	20.0	30.0	50.0	100.0	100.0	100.0				

Model No.	Unit Size	HRN10D	HRN15D	HRN20D	HRN30D	HRN100D	HRN200D	HRN400D	HRN700D			
Vane			Double Vane									
Rotation	Degree		90									
Rotational Tolerance	Degree		+3 -0									
Reference Point	Degree		45									
Port Size			Rc 1/8 Rc 1/4 Rc 3/8 Rc 1									
Minimum Operating	MPa	1.0										
Pressure Range	psi	145.0										
Maximum Operating	MPa	7.0										
Pressure Range	psi	1015.0										
Fluid Temperature Dance	°C				0 to	60						
Fluid Temperature Range	°F	32 to 140										
Displacement	cm ³	6.5	11.0	16.0	34.0	74.0	147.0	290.0	520.0			
Internal Bypass Leakage at 40°C	cm³/min	20.0	30.0	40.0	60.0	100.0	200.0	200.0	200.0			

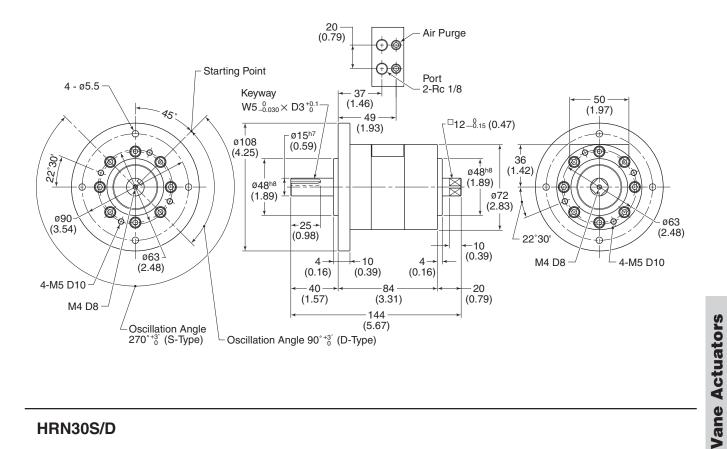
Kinetic Energy Ratings and Bearing Load Capacities

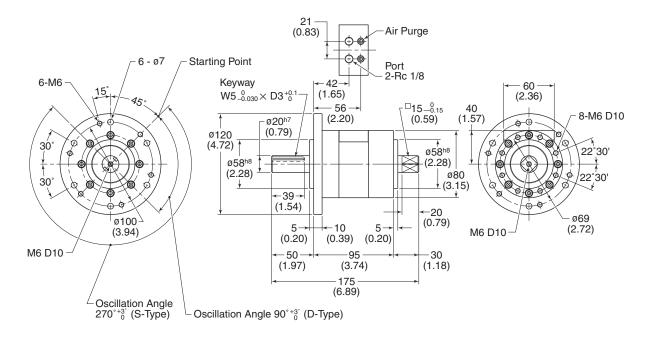

Model Number		Bearing Loa	Maximum Inertia					
	Thrus	t Load	Radia	l Load	Energy Rating			
	N	lb	N	lb	J	in-lb		
HRN10	4.9	1.1	9.8	2.2	0.013	0.12		
HRN15	9.8	2.2	19.6	4.4	0.025	0.22		
HRN20	24.5	5.5	49	11.0	0.046	0.41		
HRN30	39.2	8.8	78.4	17.6	0.088	0.78		
HRN100	68.6	15.4	147.0	33.0	0.255	2.26		
HRN200	137.2	30.8	294.0	66.1	0.510	4.51		
HRN400	166.6	37.5	343.0	77.1	0.755	6.68		
HRN700	166.6	37.5	343.0	77.1	0.911	8.06		

Note: The allowable inertia energy is applicable when the load is installed on the keyed input shaft.


Caution: Operation of actuator at conditions of excessive inertia energy may damage the actuator. See Engineering Guidelines section for selection criteria.

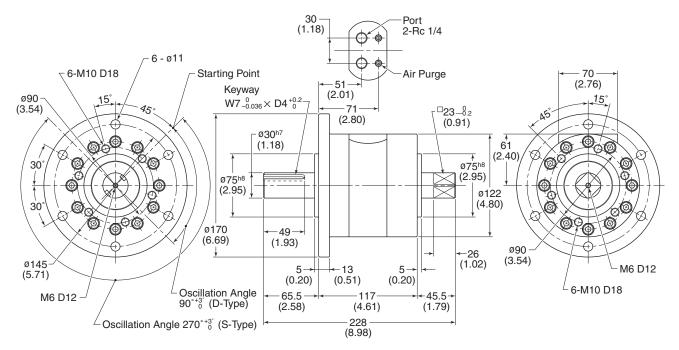
HRN10S/D


HRN15S/D

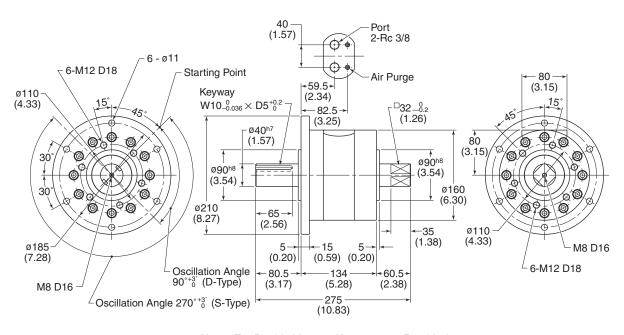

Dimensions are in mm (Inches)

HRN20S/D

HRN30S/D


Note: For Double Vane, 2 Keyways are Provided

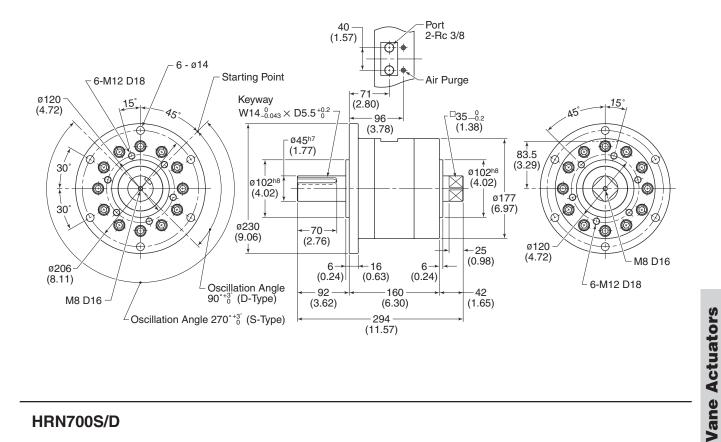
Dimensions are in mm (Inches)


1800 HRN.pmd, M&A

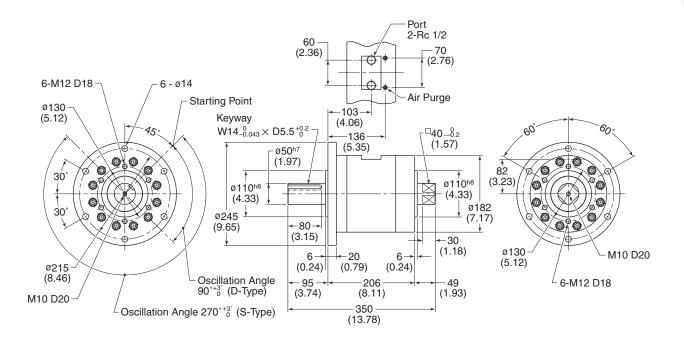
HRN100S/D

Note: For Double Vane, 2 Keyways are Provided

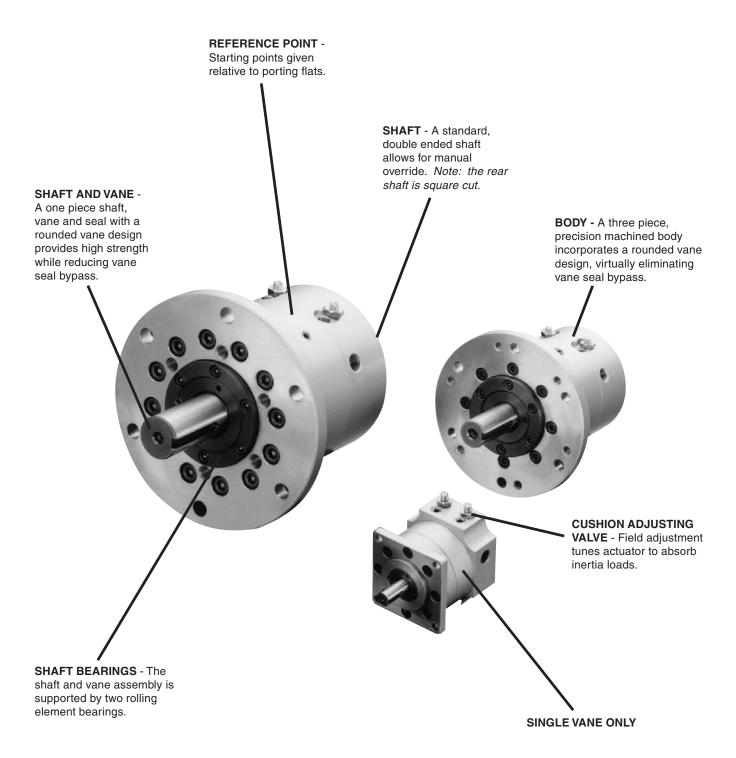
HRN200S/D



Note: For Double Vane, 2 Keyways are Provided


Dimensions are in mm (Inches)

HRN400S/D



HRN700S/D

Dimensions are in mm (Inches)

HRN-C Series

The HRN-C Series provides an additional range of vane actuator technology. Unique cushion options are available for applications where control of high inertia loads is critical. The actuator incorporates load deceleration cushions which act over the last 20 to 25 degrees of rotation. These are field adjustable and can be selected to meet varying rotational speeds and loading.

The HRN-C Series also incorporates a rounded vane design, which provides lower vane seal bypass. The shaft and vane are machined from high strength alloy steel as one piece. The vane seal is molded in a pre-machined groove in order to provide a one piece shaft, vane, and seal assembly for long life and reliability. The standard rear output shaft provides for an easily accessible manual override in the event that hydraulic pressure is lost.

Available options include rotations of 90 degrees and 180 degrees with the unit configured as a single vane arrangement. Reference points (or keyway timing) are provided relative to the port positioning. Large, convenient, front flange with precision pilot diameter allows for concise mounting and easy integration with the customer's application.

Specifications

• Rated Operating Pressure: 7 MPa (1000 psi) • Minimum Operating Pressure: 1 MPa (145 psi)

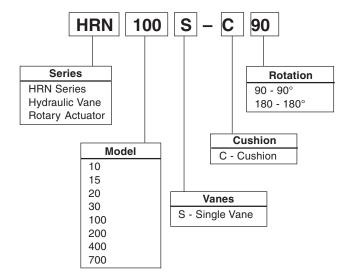
• Output Torque @ 7 MPa: 10 to 1960 N•m (89 to 17346 in-lb)

• Standard Rotations: 90° to 270°

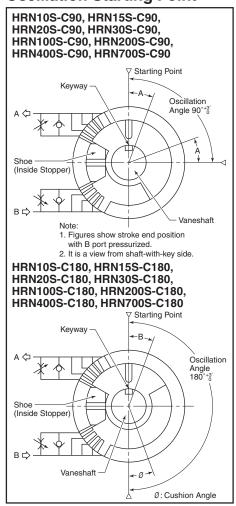
• Operating Temperature Range: 0°C to 60°C (32°F to 140°F) • Filtration Requirement: ISO Class 17/14 Cleanliness Level

 Mounting Orientation: Unrestricted

Standard Keyway Timing: See Figures for Start Position


Quick Reference Data

	Theoretical Output Torque									Maximum			
Model Number		1.75 MPa		3.5	3.50 MPa		5.00 MPa		7.00 MPa		Breakaway		nit
		(250 psi)		(500 psi)		(750 psi)		(1000 psi)		Pressure		Weight	
		N•m	(in-lb)	N•m	(in-lb)	N•m	(in-lb)	N•m	(in-lb)	MPa	(psi)	kg	(lb)
	HRN10S-C	2	(17.7)	5	(44.3)	7	(62.0)	10	(88.5)	1.00	(145)	1.20	(2.65)
	HRN15S-C	3	(26.6)	8	(70.8)	13	(115.1)	20	(177.0)	1.00	(145)	2.40	(5.29)
	HRN20S-C	8	(70.8)	13	(115.1)	23	(203.6)	29	(256.7)	1.00	(145)	3.30	(7.28)
Single Vane	HRN30S-C	10	(88.5)	26	(230.1)	38	(336.3)	58	(513.3)	1.00	(145)	4.70	(10.36)
Siligle valle	HRN100S-C	23	(203.6)	56	(495.6)	92	(814.2)	123	(1088.6)	1.00	(145)	13.50	(29.77)
	HRN200S-C	45	(398.3)	124	(1097.4)	212	(1876.2)	314	(2778.9)	1.00	(145)	25.70	(56.67)
	HRN400S-C	170	(1504.5)	250	(2212.5)	398	(3522.3)	539	(4770.2)	1.00	(145)	34.00	(74.97)
	HRN700S-C	201	(1778.9)	410	(3628.5)	579	(5124.2)	1078	(9540.3)	1.00	(145)	44.00	(97.02)



Model Code and Ordering Information

Example: HRN100S-C90

Oscillation Starting Point

Engineering Data / Specifications

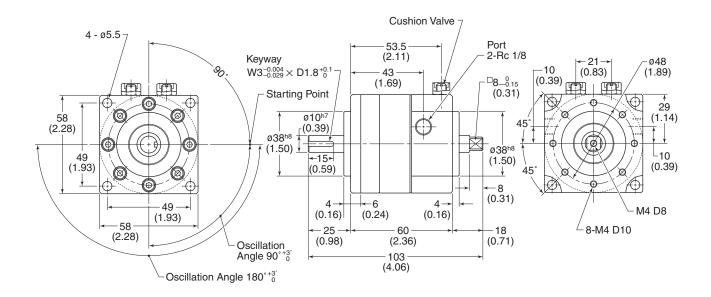
Model No.	Unit Size	HRN1	IOS-C	HRN1	I5S-C	HRN2	20S-C	HRN	30S-C			
Vane			Single Vane									
Rotation	Degree	90	180	90	180	90	180	90	180			
Rotational Tolerance	Degree	+3 -0										
Reference Point	Degree				9(0						
Port Size					Rc	1/8						
On a sertion Branch Branch	MPa				1.0 to	7.0						
Operating Pressure Range	psi				145.0 to	1015.0						
T D	°C				0 to	60						
Temperature Range	°F				32 to	140						
D'andra and	cm ³	6.5	3.3	11.0	5.5	16.0	8.0	34.0	17.0			
Displacement	in ³	0.40	0.20	0.67	0.30	0.98	0.49	2.07	1.04			
Internal Bypass Leakage at 40°C	cm ³ /min	1	0	1	5	2	0	30				
Maximum Moment of Inertia	in-lb	8	.5	17	7.0	25	5.5	50).9			
Maximum Inrush	Radian/s				10.4	720						
Angular Velocity	Degree/s				60	0						
0 1: 4 1	Radian	0.3	491			0.4	363					
Cushion Angle	Degree	2	0			2	5					
Oscillating Angle	Radian	1.2217	2.7925	1.1345	2.7053	1.1345	2.7053	1.1345	2.7053			
Before Cushioning	Degree	70	160	65	155	65	155	65	155			

Model No.	Unit Size	HRN1	00S-C	HRN2	00S-C	HRN4	00S-C	HRN7	'00S-C				
Vane			•										
Rotation	Degree	90	180	90	180	90	180	90	180				
Rotational Tolerance	Degree	+3 -0											
Reference Point	Degree				9	0							
Port Size		Rc	1/4		Rc	3/8		Rc	1/2				
0 :: 0 0	MPa				1.0 to	o 7.0							
Operating Pressure Range	psi	psi 145.0 to 1015.0											
- . 5	°C				0 tc	60							
Temperature Range	°F				32 to	140							
Disalessant	cm ³	74.0	37.0	147.0	73.5	290.0	145.0	520.0	260.0				
Displacement	in ³	4.52	2.26	8.97	4.49	17.70	8.85	31.70	15.90				
Internal Bypass Leakage at 40°C	cm ³ /min	5	0	10	00	10	00	100					
Maximum Moment of Inertia	in-lb	12	7.3	33	9.5	59	4.3	118	38.0				
Maximum Inrush	Radian/s	8.7	266	6.9	813	5.2	360	4.3	633				
Angular Velocity	Degree/s	50	00	40	00	30	00	2	50				
0 1: 4 1	Radian				0.4	363		•					
Cushion Angle	Degree				2	5							
Oscillating Angle	Radian	1.1345	2.7053	1.1345	2.7053	1.1345	2.7053	1.1345	2.7053				
Before Cushioning	Degree	65	155	65	155	65	155	65	155				

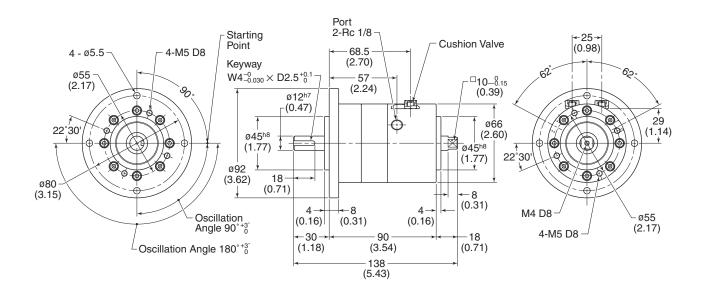
Kinetic Energy Ratings and Bearing Load Capacities

Model		Bearing Loa	d Capacities		Maximur	n Inertia		
Number	Thrus	t Load	Radia	Load	Energy Rating			
Number	N	lb	N	lb	J	in-lb		
HRN10S-C	4.9	1.1	9.8	2.0	0.013	0.12		
HRN15S-C	9.8	2.2	19.6	4.0	0.025	0.22		
HRN20S-C	24.5	5.5	49.0	11.0	0.046	0.41		
HRN30S-C	39.2	8.8	78.4	18.0	0.088	0.78		
HRN100S-C	68.6	15.4	147.0	33.0	0.260	2.26		
HRN200S-C	137.2	30.8	294.0	66.0	0.510	4.51		
HRN400S-C	166.6	37.5	343.0	77.0	0.760	6.68		
HRN700S-C	166.6	37.5	343.0	77.0	0.910	8.06		

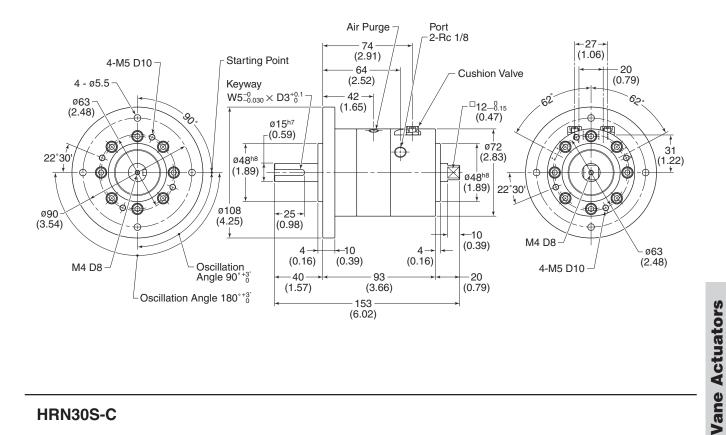
Note: The allowable inertia energy is applicable when the load is installed on the keyed input shaft.

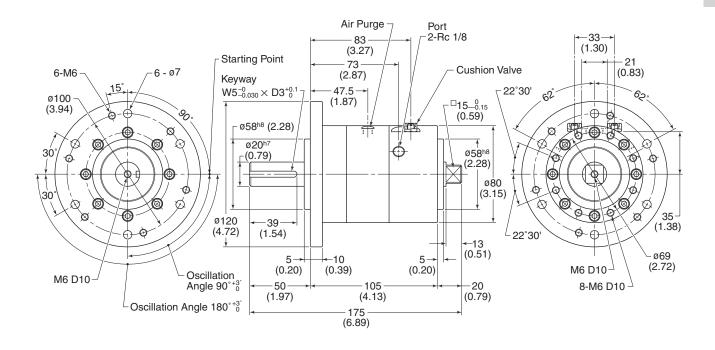

Maximum Absorbed Energy

Model			Maximum Absorbe	ed Energy J (in-lb)					
Number	Operating Pressure MPa (psi)								
Number	1.96 (284)	2.94 (426)	3.92 (569)	4.90 (710)	5.88 (853)	6.86 (995)			
HRN10S-C	2.06 (18.23)	1.76 (15.58)	1.47 (13.01)	1.18 (10.44)	0.88 (7.79)	0.59 (5.22)			
HRN15S-C	4.80 (42.48)	4.12 (36.46)	3.43 (30.36)	2.74 (24.25)	2.06 (18.23)	1.37 (12.12)			
HRN20S-C	7.55 (66.82)	6.47 (57.26)	5.39 (47.70)	4.31 (38.14)	3.23 (28.59)	2.16 (19.12)			
HRN30S-C	15.09 (133.55)	12.94 (114.52)	10.78 (95.40)	8.62 (76.29)	6.47 (57.26)	4.31 (38.14)			
HRN100S-C	30.87 (273.20)	26.46 (234.17)	22.05 (195.14)	17.64 (156.11)	13.23 (117.09)	8.62 (76.29)			
HRN200S-C	78.89 (698.18)	67.62 (598.44)	56.35 (498.70)	45.08 (398.96)	33.81 (299.22)	22.54 (199.48)			
HRN400S-C	137.20 (1214.22)	117.60 (1040.76)	98.00 (867.30)	78.40 (693.84)	58.80 (520.38)	39.20 (346.92)			
HRN700S-C	250.39 (2215.95)	214.62 (1899.39)	178.85 (1582.82)	143.08 (1266.26)	107.31 (949.69)	71.54 (633.13)			

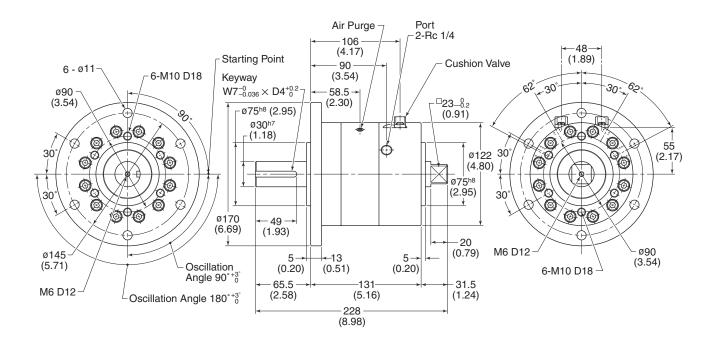

1800_HRN.pmd, M&A

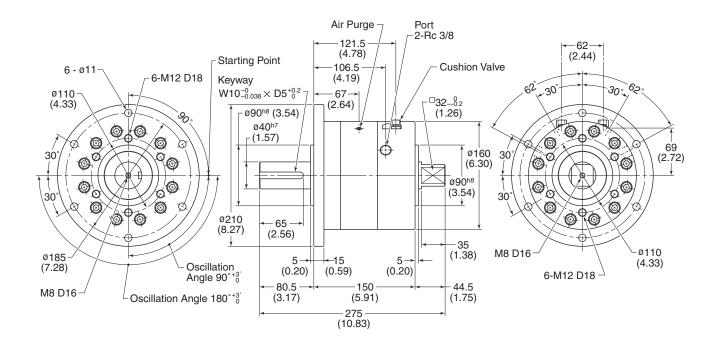
HRN10S-C


HRN15S-C


Dimensions are in mm (Inches)

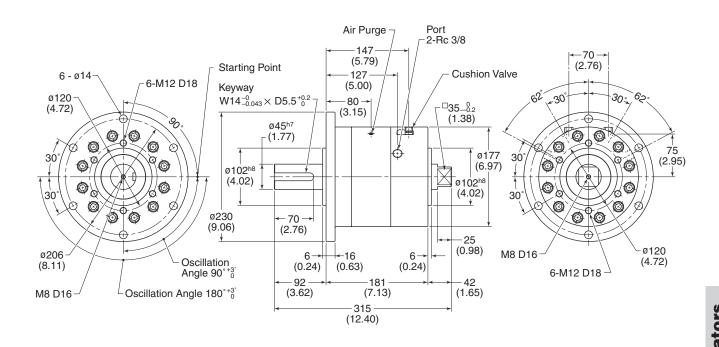
HRN20S-C


HRN30S-C

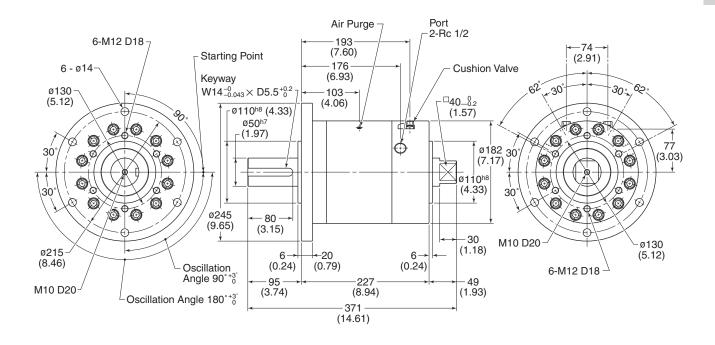

Dimensions are in mm (Inches)

HRN100S-C

HRN200S-C



Dimensions are in mm (Inches)



1800_HRN.pmd, M&A

HRN400S-C

HRN700S-C

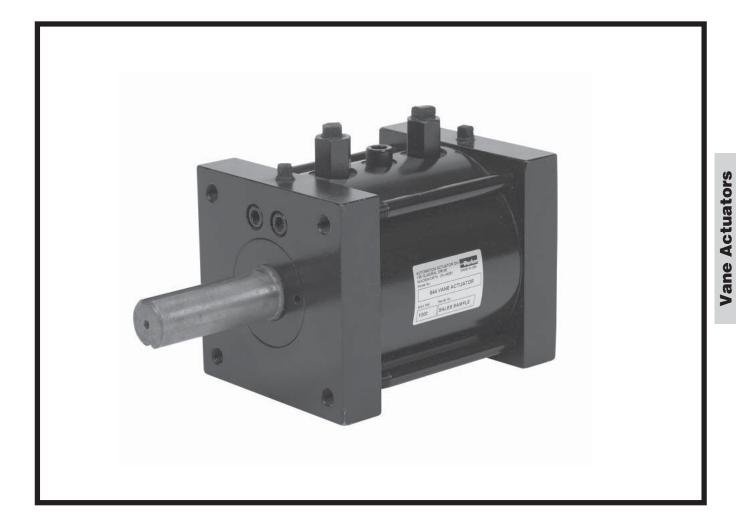
Dimensions are in mm (Inches)

Dimensions

Keys for HRN Series Actuators

HRN Series Actuators with keyways are accompanied by the following keys, respectively.

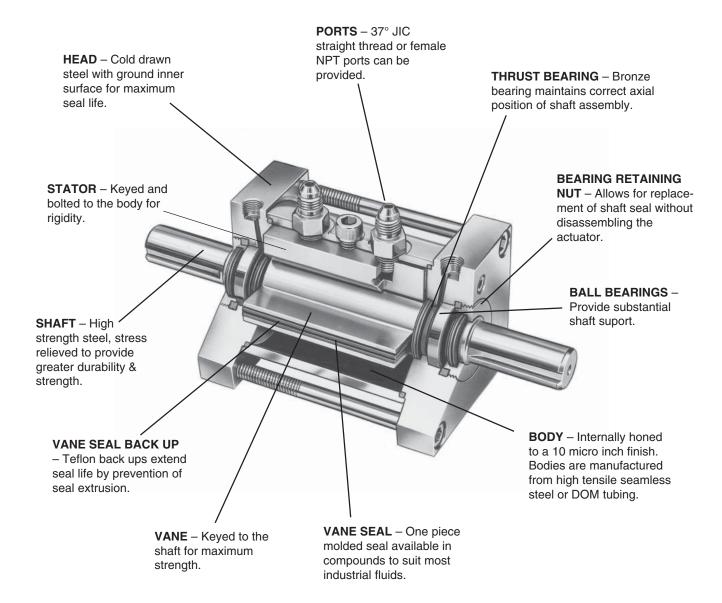
Model No.	Key Size	Qua	ntity
woder No.	Rey Size	Standard	With Cushion
HRN10	3 x 3 x 15	1	1
HRN15	4 x 4 x 18	1	1
HRN20	5 x 5 x 25	1	1
HRN30	5 x 5 x 39	Single Bane: 1 Double Bane: 2	1
HRN100	7 x 7 x 49	Single Bane: 1 Double Bane: 2	1
HRN200	10 x 8 x 65	Single Bane: 1 Double Bane: 2	1
HRN400	14 x 9 x 70	1	1
HRN700	14 x 9 x 80	1	1


Dimensions are in mm

Key Size	В	Н	L	С	R
3 x 3 x 15	3 -0.05	3 -0.25	15 0 -0.18	0.16 - 0.25	1.5
4 x 4 x 18	4 -0.03	4 -0.03	18 -0.18	0.16 - 0.25	2
5 x 5 x 25	5 -0.03	5 -0.03	25 0 -0.21	0.25 - 0.40	2.5
5 x 5 x 39	5 -0.03	5 -0.03	39 -0.25	0.25 - 0.40	2.5
7 x 7 x 49	7 -0.036	7 -0.036	49 -0.025	0.25 - 0.40	3.5
10 x 8 x 65	10 -0.036	8 -0.09	65 -0.3	0.4 - 0.6	5
14 x 9 x 70	14 -0.043	9 -0.09	70 -0.3	0.4 - 0.6	7
14 x 9 x 80	14 -0.043	9 -0.09	80 -0.3	0.4 - 0.6	7

Tork-Mor Series

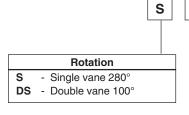
Vane Style Hydraulic Rotary Actuators



Contents

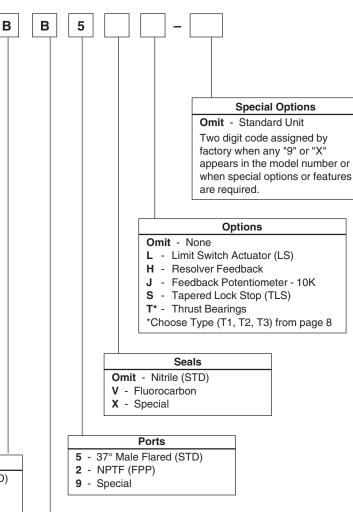
Features	2
Ordering Information	3
Specifications	4
Dimensional Data	
Options	
Mounting Options	6-7
Shaft Options	
Limit Switch Actuator	7
Taper Lock Stop	8
Thrust Bearings	8

1800_Tork-Mor.pmd, M&A



Model Code and Ordering Information

Example: S42-BB5



42

		Size	·
		Torque at Max.	Max. Pressure
Size	Rotation	Pressure (lb-in)	(PSI)
33	S	800	500
33	DS	1,625	500
42	S	3,370	1000
42	DS	6,740	1000
44	S	4,100	750
44	DS	5,500	500
46	S	4,050	500
46	DS	3,750	250
74	S	20,000	1000
74	DS	29,600	750
77	S	25,300	750
77	DS	33,800	500
105	S	61,300	1000
105	DS	124,000	1000
108	S	71,000	750
108	DS	145,000	750
1012	S	70,300	500
1012	DS	142,000	500

Mounting

- **B** Base Mount, Position 1 (BM1) (STD)
- C Base Mount, Position 2 (BM2)
- D Base Mount, Position 3 (BM3)
- E Base Mount, Position 4 (BM4)
- A Face Mount (FM)
- F Front Mount (FF)
- G Side Foot (SF)
- H End Foot (EF)
- X Special Mounting

Shaft Style

- B Single Male Keyed Shaft (STD 7 & 10 Sizes)
- C Double Male keyed Shaft (STD 3 & 4 Sizes)
- E Single Male SAE 10B Splined Shaft
- F Double Male SAE 10B Splined Shaft
- L Single Square Shaft (SB)
- M Double Square Shaft (SB)
- X Special Shaft

Tork-Mor Series

Tork-Mor Series actuators are produced in eighteen sizes generating up to 145,000 lb-in of torque at rated pressure. Capable of providing full torque instantly in either direction, they are available with 100° or 280° rotation at pressures up to 1000 psi. The Tork-Mor Series can be mounted in any axis using a wide variety of standard or optional mountings.

Proven reliable through many years of field service, the Tork-Mor Series incorporates many quality features including precision ball bearings to provide shaft support, externally removable gland for ease of seal replacement and cylinders honed to a 10 micro inch finish to ensure long seal life.

Specifications

• Rated Operating Pressure:

Pneumatic – 250 psi Hydraulic – See table below

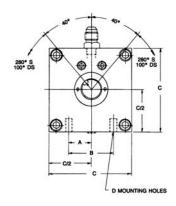
• Rotations: S Models – 280° ± 1°; DS Models – 100° ± 1°

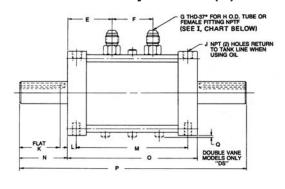
 Max. Allowable Drainline Pressure: Hydraulic – 50 PSI; Pneumatic – Drain lines are not necessary; plug drain ports

External Shaft Load Capacities:

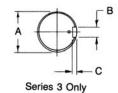
Thrust Loads: Units have no thrust load capacity. See page 8 for optional thrust load bearings and their capacities. Radial Loads: External radial loads are not recommended and can reduce the life of the unit. Consult factory before applying.

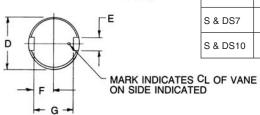
 Installation and Operating: Read instructions in Maintenance & Installation Section of this catalog before applying Tork-Mor Series actuators.


Model Quick Reference

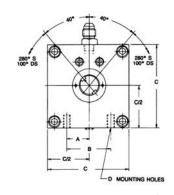

Мо	del	Rat Pressu			(Output To	rque					Bypass akage	Max. Breakaway	Unit
280° Rotation	100° Rotation	Normal Operating	Non- Shock	50 psi	100 psi	250 psi	500 psi	750 psi	1000 psi	Capacity (cu. in.)	100 psi Air (cfm)	500 psi Oil* (cu.in./min)	Pressure (psi)	Weights (lbs)
S33	_	350	500	38	115	360	800	_		8.7	.20	2.5	25	8
_	DS33	350	500	77	235	728	1,625	_	_	6.2	.25	3.0	25	8.5
S42	_	750	1000	85	240	750	1,640	2,350	3,370	17.9	.25	3.0	25	16
_	DS42	750	1000	170	480	1,500	3,280	4,700	6,740	12.8	.30	3.5	25	19
S44	_	500	750	160	415	1,280	2,700	4,100	_	31.8	.25	3.0	25	22
_	DS44	350	500	325	840	2,570	5,500	_	_	22.6	.30	3.5	25	23
S46	_	350	500	240	600	1,850	4,050	_	_	47.7	.25	3.0	25	25
_	DS46	150	250	490	1,220	3,750	_	_	_	34.1	.30	3.5	25	27
S74	_	750	1,000	540	1,390	4,230	9,500	14,500	20,000	106	.30	3.5	25	92
_	DS74	500	750	1,080	2,800	8,560	19,300	29,600	_	75.7	.35	4.0	25	118
S77	_	500	750	950	2,430	7,400	16,700	25,300	_	186	.30	3.5	25	105
_	DS77	350	500	1,900	4,900	15,000	33,800	_	_	133	.35	4.0	25	120
S105	_	750	1,000	1,660	4,260	13,000	29,300	44,500	61,300	326	.30	5.0	25	290
_	DS105	750	1,000	3,330	8,650	26,300	59,300	90,900	124,000	233	.35	5.5	25	345
S108	_	500	750	2,660	6,820	20,800	46,900	71,000	_	521	.30	5.0	25	340
_	DS108	500	750	5,330	13,900	42,100	94,800	145,000	_	372	.35	5.5	25	362
S1012		350	500	3,990	10,200	31,200	70,300	_	_	781	.30	5.0	25	365
_	DS1012	350	500	7,990	20,800	63,100	142,000	_	_	558	.35	5.5	25	400

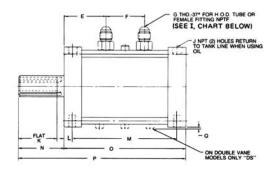
Dimensional Data


Series 3 & 4 with Std. Base Mount (B) and Double Male Keyed Shaft (C)



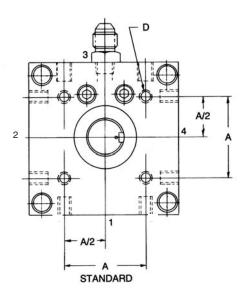
Model	Α	В	С	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р	Q
S & DS33	0.813	1.625	3.00	5/16-18 NC x .47 DP	1 5⁄8	1½	⁷ /16 - 20	1/4	1/8	1/8-27	1.50	.38	4	1.75	4¾	81/4	1/4
S & DS42	1.188	2.375	4.50	3/8-16 NC x .56 DP	1 5⁄8	1	9/16-18	3/8	1/4	1/8-27	2.50	.50	31/4	3.00	41⁄4	101/4	9/32
S & DS44	1.188	2.375	4.50	3/8-16 NC x .56 DP	1¾	21/2	9/16-18	3/8	1/4	1/8-27	2.50	.50	5	3.00	6	12	9/32
S & DS46	1.188	2.375	4.50	3/8-16 NC x .56 DP	2¾	2½	9/16-18	3/8	1/4	1/8-27	2.50	.50	7	3.00	8	14	9/32


Shaft Details for Standard Male Keyed Shafts (B & C)

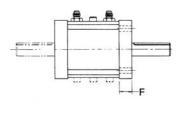


В С Е Model .749 ^{+.000} _{-.001} .093 ^{+.000} -.003 .188 S & DS33 N/A N/A N/A N/A -.000 .250 +.000 .999 +..000 +.000 .390 +.000 S & DS4 N/A .780 N/A N/A -.001 -.001 1.749 ^{+.000} -.001 +.002 +.00 +.000 N/A N/A N/A .375 .730 1.460 -.010 +.000 2.999 ^{+.000} -.001 .750 ^{+.002} _{-.000} +.000 N/A N/A N/A 1.200 2.400 -.010

Series 7 & 10 with Std. Base Mount (B) and Single Male Keyed Shaft (B)

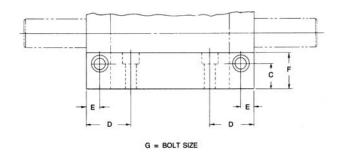

Model	Α	В	С	D	Е	F	G	Н	ı	J	K	L	M	N	0	P	Q
S & DS74	1.875	3.750	8.00	3/4-10 NC x 1.13 DP	211/16	1 5⁄8	11/16-12	3/4	3/4	1/8-27	5.00	.69	55/8	5.50	7	12.50	5/8
S & DS77	1.875	3.750	8.00	%-10 NC x 1.13 DP	33/8	31/4	11/16-12	3/4	3/4	1/8-27	5.00	.69	85/8	5.50	10	15.50	5/8
S & DS105	3.000	6.000	12.25	1-14 NC x 1.50 DP	3¾	2½	15/16 -12	1	1	1/4-18	8.00	1.25	7½	9.00	10	19.00	5/8
S & DS108	3.000	6.000	12.25	1-14 NC x 1.50 DP	41⁄4	4½	15/16 -12	1	1	1/4-18	8.00	1.25	10½	9.00	13	22.00	5/8
S & DS1012	3.000	6.000	12.25	1-14 NC x 1.50 DP	61/4	4½	15/16-12	1	1	1/4-18	8.00	1.25	14½	9.00	17	26.00	5/8

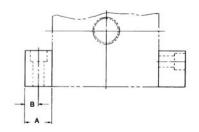
1800 Tork-Mor.pmd, M&A


Face Mount (A) Base Mount (B, C, D, E)

In addition to the standard base mounting holes in position 1, similar holes can be provided at position 2, 3 or 4. Alternate mounting holes can also be provided for face mounting as shown.

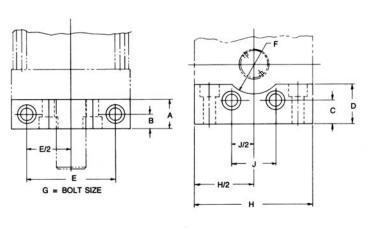
Model	Α	D
S & DS33	15⁄8	5∕16 -18 x .47 DP
S & DS4	23/8	3/4 -16 x .56 DP
S & DS7	3¾	¾ -10 x 1.13 DP
S & DS10	6	1-14 x 1.50 DP


Front Flange Mount (F)



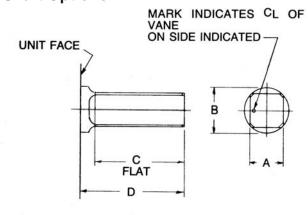
Model	Α	В	С	D	Е	F
S33	3.00	2.000	3.750	4.625	0.344	0.75
S4	4.50	3.250	5.250	6.25	0.406	1.00
S7	8.00	6.000	9.500	11.00	0.781	1.50
S10	12.25	10.000	14.500	16.50	1.031	2.50

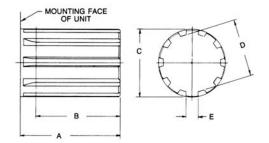
Side Foot Mount (G)



Model	Α	В	С	D	Е	F	G
SF-3	3/4	3/8	11/16	11/4	3/8	1	5/16
SF-4	1	1/2	1	11/4	1/2	1/2	3/8
SF-7	1½	3/4	2	2	11/16	3	3/4
SF-10	2	1	3	31/4	11/4	4	1

1800_Tork-Mor.pmd, M&A


End Foot Mount (H)

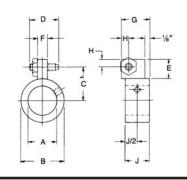


Model	Α	В	С	D	Е	F	G	Н	J
EF-3	3/4	3/8	11/16	1	2¾	3/4	5/16	3½	1 5⁄8
EF-4	1	1/2	1 ½16	1½	3¾	1	3/8	4½	23/8
EF-7	1½	3/4	21/8	3	63/8	1½	3/4	8	3¾
EF-10	2	1	31/8	4½	10	13/4	1	121/4	6

Shaft Options

Optional shafts are available as shown. Output shafts can also be provided to your special requirements.

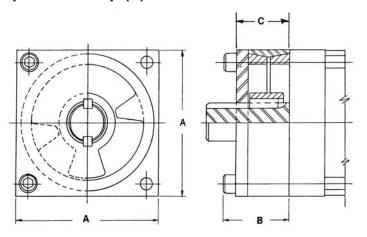
Square Shafts (L, M)


Model	Α	В	С	D
S33	.564 +.000 001	.749 +.000 001	1½	13/4
S4	.815 ^{+.000} 001	.999 +.000 001	2½	3
S7	1.378 ^{+.000} ₀₀₁	1.749 +.000 001	5	5½
S10	2.504 +.000 001	2.999 +.000 001	8	9

Splined Shafts (E, F)

Model	Α	В	С	D	E
S33	1.75	1.00	.748 .747	.639 .634	.114 .113
S4	2.38	1.50	.998 .997	.854 .849	.153 .152
S7	3.63	2.63	1.748 1.746	1.499 1.494	.270 .269
S10	5.75	4.50	2.997 2.995	2.573 2.568	.464 .463

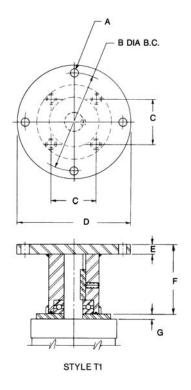
Limit Switch Actuator (L)

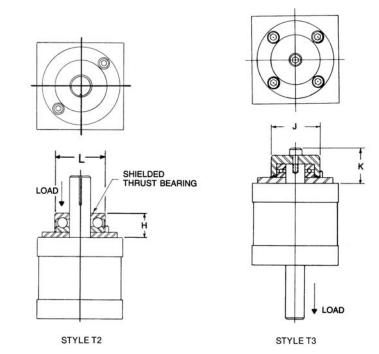


Model	Α	В	С	D	Е	F	G	Н	J
LS-3	3/4	1	7/8	3/4	1/2	1/4	5/8	3/16	5/8
LS-4	1	1½	1 3⁄8	1	7/8	3/8	1 ½	1/4	1
LS-7	1¾	21/4	1¾	1	7/8	3/8	1 ½	1/4	1
LS-10	3	3¾	25/8	1	1	1/2	11/4	1/4	1

1800_Tork-Mor.pmd, M&A

Taper Lock Stop (S)


This option provides easy adjustment of rotation for light to medium duty applications.


Model	Α	В	С
TLS-3	3	13/8	1 ½
TLS-4	41/2	1 5⁄8	1 5⁄16
TLS-7	8	2½	21/8

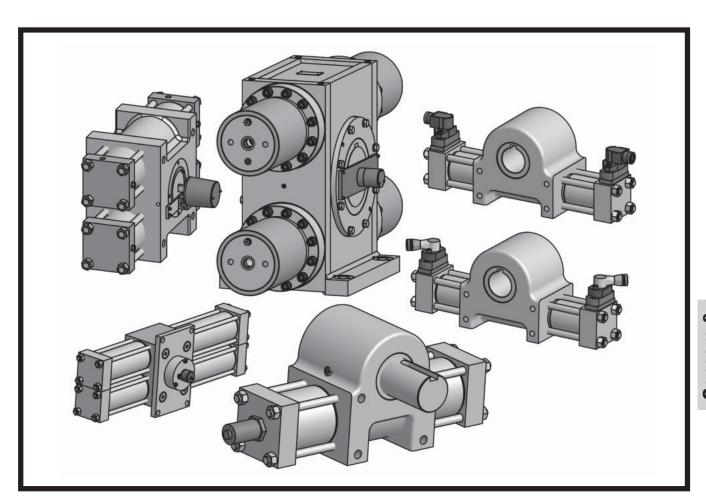
Thrust Bearings (T1, T2, T3)

External thrust bearings are advised for axially loaded applications. This includes applications where actuators are mounted in a vertical position causing the weight of the shaft assembly to exert axial thrust.

Model	Thrust Capacity (lbs)	A	В	С	D	E	F	G	н	J	K	L
S3	1600	11/32	3¾	1 5⁄8	45/8	3/8	21/8	3/16	¹³ / ₁₆	2	13/8	1½
S4	2500	13/32	51/4	23/8	6	1/2	3½	1/4	1	25/8	13/4	2
S7	4000	21/32	7½	3¾	9	5/8	41/2	3/8	11/4	3 5⁄8	21/8	31/8
S10	7000	25/32	10	6	12	3/4	5½	1/2	1½	5½	2½	4¾

Additional Options

- Fluorocarbon Seals (V)
- Feedback Potentiometer (J) Consult factory for limitations



Sensors & Feedback

-Parker

Electronic Sensors

Solid State, Reed and Proximity Sensors Feedback Packages

Contents

Hall Effect Sensors	2
Reed Switches	
Cordsets	4
Proximity Sensors	5
Foodback Packages	

1800_sensors.pmd, M&A

Solid State (Hall Effect) Sensors

Part Numbers

	Р	NP	NPN		
Model	With 6"	With 39"	With 6"	With 39"	
	Male Quick	Potted-in	Male Quick	Potted-in	
	Connect	Leads	Connect	Leads	
10	SWH-1PC	SWH-1P	SWH-1NC	SWH-1N	
15	SWH-1PC	SWH-1P	SWH-1NC	SWH-1N	
20	SWH-2PC	SWH-2P	SWH-2NC	SWH-2N	
25	SWH-2PC	SWH-2P	SWH-2NC	SWH-2N	
32	SWH-2PC	SWH-2P	SWH-2NC	SWH-2N	

Note: Switches with male quick connect option require female cordsets to be ordered separately. See page 4.

Type Solid State (PNP or NPN)

Switching Logic Normally Open Supply Voltage Range .. 6 - 30VDC

Current Output Range... Up to 100 mA at 5 VDC,

Up to 200 mA at 12 VDC and 24 VDC

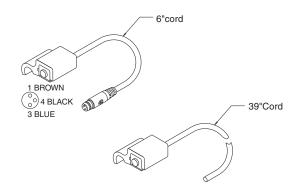
Current Consumption 7 mA at 5 VDC, 15 mA at 12 VDC,

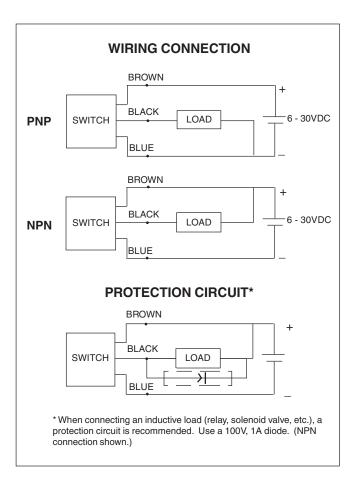
and 30 mA at 24 VDC

Switching Response 1000 Hz Maximum Residual Voltage 1.5V Maximum Leakage Current 10uA Maximum

Breakdown Voltage 1.8kVACrms for 1 sec., lead to case

Min. Current for LED 1mA


Operating Temperature . 14 to 140°F (-10 to 60°C)


Enclosure Protection Meets IEC IP67, fully encapsulated

Lead Wire 3 conductor, 24 gauge

Lead Wire Length 39 in (1 m)

Vibration Resistance 10-55 Hz, 1.5mm double amplitude

Reed Switches

Part Numbers

Model	With 6" Male Quick Connect	With 39" Potted-in Leads
10	SWR-1C	SWR-1
15	SWR-1C	SWR-1
20	SWR-2C	SWR-2
25	SWR-2C	SWR-2
32	SWR-2C	SWR-2

Note: Switches with male quick connect option require female cordsets to be ordered separately. See page 4.

Specifications

Switching Logic Normally Open

Voltage Rating...... 85-125 VAC or 6-30 VDC*

Power Rating...... 10 Watts AC or DC/Resistive Load

5 Watts AC or DC/Inductive Load

Switching Current Range . 10-200 mA/Resistive Load

(PC, Sequencer)

10-100 mA/Inductive Load (Relay)

Switching Response 300 Hz Maximum

Breakdown Voltage 1.8kVACrms for 1 sec., lead to case

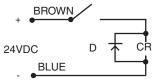
Min. Current for LED 18mA

Operating Temperature 14 to 140°F (-10 to 60°C)

Enclosure Protection Meets IEC IP67, fully encapsulated

Lead Wire 2 conductor, 22 Gauge

Lead Wire Length 39 in (1 m)


Vibration Resistance 10-55 Hz, 1.5mm double amplitude

- (+) to White
- (-) to Black

If these connections are reversed the contacts will close, but the LED will not light.

PROTECTION CIRCUIT (INDUCTIVE LOADS)

(Required for proper operation 24VDC) Select a diode with a breakdown voltage and current rating according to the load. Place a diode in parallel to the load with the polarity as indicated:

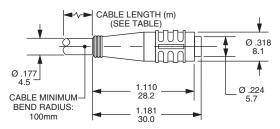
CR: Relay coil (under 0.5W coil rating)

(Recommended for longer switch life 125VAC) Select a resistor and capacitor according to the load. Place a resistor and capacitor in parallel to the load:

CR: Relay coil (under 2W coil rating) R: Resistor under 1 K ohm

R: Resistor under 1 K ohm

C: Capacitor 0.1 μF


^{*} Polarity is restricted for DC operation

8mm Cordset with Female Quick Connect

A female connector is available for all sensors with the male 8mm guick connect option. The male plug will accept a snap-on or threaded connector. Cordset part numbers are listed below:

Cable Length	Threaded Connector	Snap-On Connector
5 meters	086620T005	086620S005
2 meters	086620T002	0866205002

Snap-On **Straight Connector**

Cordset Specifications:

Connector: Oil resistant polyurethane body

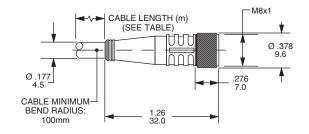
> material, PA 6 (Nylon) contact carrier, spacings to VDE 0110 Group C,

(150 AC/DC)

Gold plated beryllium copper, Contacts:

machined from solid stock

Coupling Method: Snap-Lock or chrome plated brass nut Cord Construction: Oil resistant black PUR jacket, non-


> wicking, non-hygroscopic, 300V. Cable end is stripped and tinned.

Conductors: Extra high flex stranding,

PVC insulation

Temperature: -40 to 194°F (-40 to 90°C) Protection: NEMA 1, 3, 4, 6P and IEC 1P67 Cable Length: 6.56 ft (2m) or 16.4 ft (5m)

Threaded Straight Connector

12mm Cordset with Female Quick Connect

M12 Straight Connector		
Cable Length Part Number		
5 meters	9126487205	
2 meters	9126487202	

A female connector is available for all sensors with the male 12mm quick connect option. The cordsets are available with a right angle or straight connector. Cordset part numbers are listed above.

Cordset Specifications:

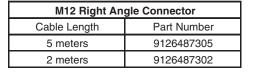
Connector: Polyvinylchloride (PVC) body material,

PVC contact carrier, spacing to VDE 0110

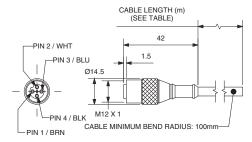
Group C, (250VAC / 300VDC)

Contacts: Gold Plated Copper Tin (CuSn), stamped

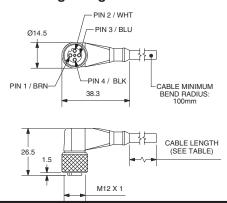
from stock.


Coupling Method: Threaded nut: Chrome plated brass. Cord Construction: PVC non-wicking, non-hygroscopic,

250VAC / 300VDC. Cable end is stripped.

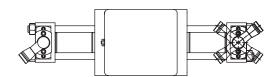

Conductors: Extra high flex stranding with PVC

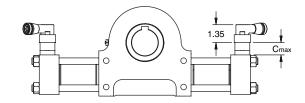
insulation


-13°F to 158°F (-25°C to 70°C) Temperature: Protection: NEMA 1, 3, 4, 6P and IEC 1P67 Cable Length: 6.56 ft (2m) or 16.4 ft (5m)

Straight Connector

Right Angle Connector



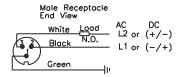


EPS 7 & 6 Sensors

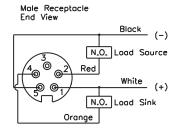
Connector housing is rotatable 360° To rotate, loosen screws, position the connector housing and secure screws.

Model Series	Cylinder Series	C _{max}
LTR	2L	1.05"
HTR	2H	1.75"

Series and Parallel Wiring


When Parker EPS-6 or 7 proximity switches are used as inputs to programmable controllers the preferred practice is to connect each switch to a separate input channel of the PC. Series or parallel operations may then be accomplished by the internal PC programming.

Parker EPS-6 or 7 switches may be hard wired for series operation, but the voltage drop through the switches (see specifications) must not reduce the available voltage below what is needed to actuate the load.


Parker EPS-6 or 7 switches may also be hard wired for parallel operation. However, the leakage current of each switch will pass through the load. The total of all leakage currents must not exceed the current required to actuate the load. In most cases, the use of two or more EPS-6 or 7 switches in parallel will require the use of a bypass (shunt) resistor.

Connector Pin Numbering

3-Pin Mini

5-Pin Mini

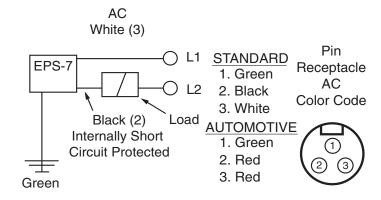
Sensors **Proximity Sensors**

Specifications

Style:	EPS-7	EPS-6	
Description:	Economical, General Purpose, 2 wire device, primarily for AC applications, not suitable for 24 VDC applications.	Economical, General Purpose, 3-wire, DC sensor, dual output: sinking and sourcing	
Supply Voltage:	20 to 250 VAC/DC	10 to 30 VDC	
Load Current, min:	8 mA	NA	
Load Current, max:	300 mA	200 mA	
Leakage Current:	1.7 mA, max.	10 micro amps max.	
Voltage Drop:	7 V, max.	2 VDC max.	
Operating Temperature:	-14° to +158° F	-14° to +158° F	
Sensor Type:	Inductive proximity	Inductive proximity	
Connection:	3 pin mini	5 pin mini	
Enclosure Rating:	IEC IP67	IEC IP67	
LED indication:	Yes	Yes	
Short Circuit Protection:	Yes	Yes	
Weld Field Immunity:	Yes	Yes	
Output:	2 wire, Normally Open with leakage current	Dual output: DC Sinking and DC Sourcing, user selectable via wiring	
Approvals/Marks:	CE, UL, CSA	CE, UL, CSA	
Make/Break Location:	0.125" from end of stroke, ty	pical. Tolerance is 0/-0.125"	
Wiring Instructions:	Pin 1: AC Ground (Green) Pin 2: Output (Black) Pin 3: AC Line (White)	Pin 1) +10 to 30 VDC (White) Pin 2) Sourcing Output (Red) Pin 3) Grounded (not connected or required) Pin 4) Sinking Output (Orange) Pin 5) DC Common (Black)	
Connector: Cable: 6' Cable: 12' Cable: 6', Right Angle	085355-0006 085355-0012 087547-0006	085917-0006 085917-0012 —	

Part Numbers

EPS-7	EPS-6
1488970125	1488960125
1488970206	1488960206
1488970288	1488960288
1488970456	1488960456
	1488970125 1488970206 1488970288

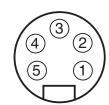

EPS 7

Connectors

The male quick disconnect on the Parker EPS 7 is a Brad Harrison 40909 connector.

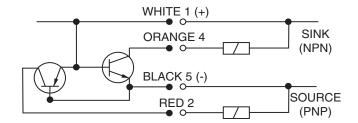
Female connects must be purchased with one of the following cable lengths.

	Parker Part No.		
Cable Length	Automotive	Standard	
3'	085356003	0853550003	
6'	085356006	0853550006	
9'	085356009	_	
12'	0853560012	0853550012	



EPS₆

Connectors


The male quick disconnect on the Parker EPS-6 is a Brad Harrison 41310 connector.

Plug Pin and Cable Identification

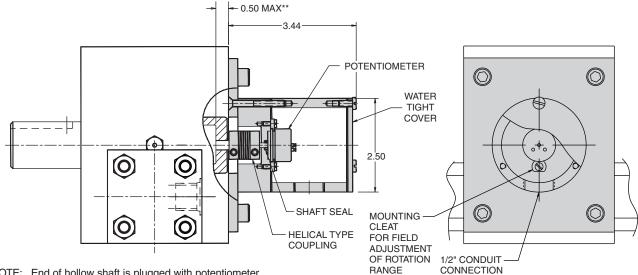
- 1) +10 to 30 VDC (White)
- 2) Source (Red)
- 3) Grounded not connected nor required
- 4) Sink (Orange)
- 5) Common (Black)

Cable Length	Parker No.
3	085917 0003
6	085917 0006
12	085917 0012

LED Function	'Ready"	"Target"
Power Applied (No Target)	ON	OFF
Target Present	OFF	ON
Short Circuit Condition	FLASH	FLASH

Sensors Feedback Packages

Feedback packages are available for LTR, HTR, M Series and Tork-Mor actuators. The feedback potentiometer may be ordered as part of the model code (Code J). Other options must be ordered separately. See the following pages for specifications.


Mod	del	Temposonics	Teknar Linear	Precision Feedback	Danishini
Single Rack	Double Rack	LDT Feedback	Potentiometer	Potentiometer	Resolver
LTR101	LTR102	_	_	Code J	Code H
LTR151	LTR152	_	_	Code J	Code H
LTR201	LTR202	_	_	Code J	Code H
LTR251	LTR252	_	_	Code J	Code H
LTR321	LTR322	_	_	Code J	Code H
HTR.9	HTR1.8	_	_	Code J	Code H
HTR3.7		_	_	Code J	Code H
	HTR7.5	Special	Special	Code J	Code H
HTR5				Code J	Code H
	HTR10	Special	Special	Code J	Code H
HTR15		Special	Special	Code J	Code H
	HTR30	Special	Special	Code J	Code H
HTR22	1111100	Special	Special	Code J	Code H
	HTR45	Special	Special	Code J	Code H
HTR75	1111140	Special	Special	Code J	Code H
1111173	HTR150	Special	Special	Code J	Code H
HTR300	11111130	Special	Special	Code J	Code H
HINSUU	HTR600	Special	Special	Code J	Code H
	HINOUU	Special			
75M		Special	Special	Code J	Code H
	150M	Special	Special	Code J	Code H
300M		Special	Special	Code J	Code H
	600M	Special	Special	Code J	Code H
	1,000M	Special	Special	Code J	Code H
	1,500M	Special	Special	Code J	Code H
	2,000M	Special	Special	Code J	Code H
	3,000M	Special	Special	Code J	Code H
	4,000M	Special	Special	Code J	Code H
	5,000M	Special	Special	Code J	Code H
	6,000M	Special	Special	Code J	Code H
	7,000M	Special	Special	Code J	Code H
	8,000M	Special	Special	Code J	Code H
	9,000M	Special	Special	Code J	Code H
	10,000M	Special	Special	Code J	Code H
	15,000M	Special	Special	Code J	Code H
	20,000M	Special	Special	Code J	Code H
	25,000M	Special	Special	Code J	Code H
	30,000M	Special	Special	Code J	Code H
	40,000M	Special	Special	Code J	Code H
	50,000M	Special	Special	Code J	Code H
33S	33DS			Code J	Code H
42S	42DS	<u> </u>		Code J	Code H
42S 44S	42DS 44DS			Code J	Code H
44S 46S					
	46DS		_	Code J	Code H
74S	74DS		_	Code J	Code H
77S	77DS		_	Code J	Code H
105S	105DS		_	Code J	Code H
108S	108DS	_	_	Code J	Code H
1012S	1012DS	_	<u> </u>	Code J	Code H

Sensors

PRECISION FEEDBACK POTENTIOMETER PACKAGE (J)

**NOTE: End of hollow shaft is plugged with potentiometer drive shaft. Mating shaft engaged length must clear plug thickness.

APPLICATION:

The potentiometer option is an analog feedback device designed for use on a wide variety of applications thatutilize closed-loop feedback to achieve accurate position, velocity, or motion control. The potentiometer option can also be used on open-loop systems as a continuous, infinite position monitoring device.

OPERATION:

A potentiometer is a variable resistor. There are three electrical terminals on the potentiometer - two on opposite ends of a fixed conductive plastic element (terminals 1 and 3, see electrical schematic on the right) and one attached to the "wiper" that moves along the conductive element as the shaft rotates (terminal 2). As the potentiometer shaft rotates, resistance between terminal 2 and terminals 1 and 3 changes.

Because the resistance of the potentiometer is linear (± .1%), when a fixed voltage level is supplied across terminals 1 and 3, shaft position can be determined by reading the output voltage at terminal 2. By measuring the rate of change in voltage at terminal 2, rotational velocity can be determined. To determine actuator position or velocity, the potentiometer shaft is connected to the actuator shaft via a flexible coupling. The potentiometer is enclosed in a water tight enclosure for resistance to dirty environments.

ORDERING INFORMATION:

Specify in model code.

POTENTIOMETER SPECIFICATIONS:

 Potentiometer: 7/8" diameter single turn

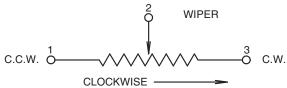
precision servo-mount with conductive plastic element

 Resistance: 10K ohms • Resistance Tolerance: ± 10% Linearity: ± 1%

• Resolution: Essentially infinite

• Effective electrical angle: $340^{\circ} \pm 3\%$ Power rating: 70°C - 1 watt 125°C - 0 watt

 Temperature Rating: - 40°C to + 125°C · Backlash: 0.1° max. • Rotational life: 20,000,000 rev. Terminal: Rear, turret style

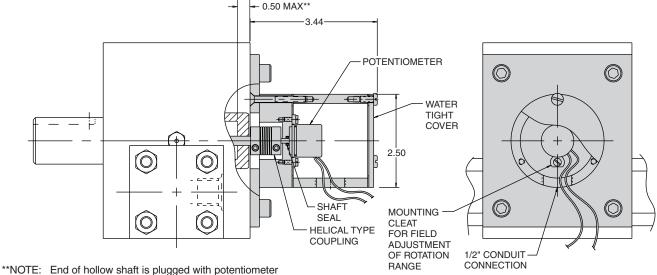

Available on:

Rack & Pinion* -LTR Series HTR Series

M Series

Vane -Tork-Mor Series Maximum Rotation 360° mechanical

Electrical Schematic:


NOTE:

- *1. Rack and pinion actuators have a small amount of backlash - consider before applying.
- 2. Electrohydraulic options and operation may affect other actuator components such as seals, bearings, etc. Consult your local representative for additional information.

1800 sensors.pmd. M&A

PRECISION RESOLVER FEEDBACK PACKAGE (H)

^^NOTE: End of hollow shaft is plugged with potentiomete drive shaft. Mating shaft engaged length must clear plug thickness.

APPLICATION:

The resolver option is a precision analog feedback device designed for use on a wide variety of applications that utilize closed-loop feedback to achieve accurate position, velocity, or motion control. The resolver option can also be used on open-loop systems as a continuous, infinite position monitoring device.

OPERATION:

A resolver is a brushless rotary sychronous transformer which eliminates wiping contact and provides higher response and accuracy. A voltage and frequency is applied across the primary coil; changes in shaft position cause a proportional change in the secondary winding. Measuring the rate of change also provides velocity. To determine actuator position or velocity, the resolver shaft is connected to the actuator shaft via a flexible coupling. The resolver is enclosed in a water tight enclosure for resistance to dirty environments.

ORDERING INFORMATION:

Actuators can be supplied as complete packages as specified in the model code, or just the enclosure for the mounting of a customer supplied resolver can be provided. Consult the factory or your local representative for specific application and ordering information.

RESOLVER SPECIFICATIONS:

 Resolver: 11D servo-mount, brushless synchro

Input Voltage: 7.5 volts
Input Frequency: 4000 Hz
Input Current: 13.5 mA (max)

Input Current: 13.5 mA (max)
Input Power: 60 mW
Output Voltage: 4 volts
Phase Shift: -2°
Sensitivity: 70 mV/°

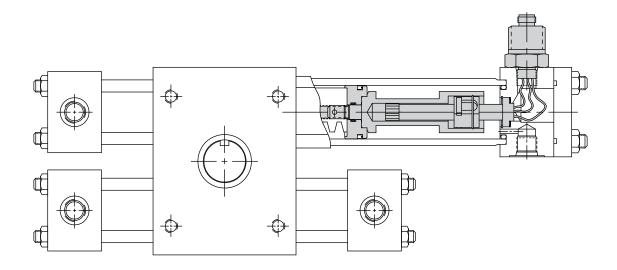
DC Rotor Resistance: 15 ohms
DC Stator Resistance: 19 ohms
Total Null Voltage: 20 mV
Accuracy (Maximum error): 7 minutes*

• Leads: #28 AWG, 12 inches long

• Available on:

Rack & Pinion* - LTR Series

HTR Series M Series


Vane - Tork-Mor Series

NOTE:

- Rack and pinion actuators have a small amount of backlash – consider before applying.
- Electrohydraulic options and operation may affect other actuator components such as seals, bearings, etc.
 Consult your local representative for additional information.

LINEAR POTENTIOMETER FEEDBACK PACKAGE (Oildyne Teknar)

APPLICATION:

The linear potentiometer option is an analog feedback device typically used for rotary actuator rotations exceeding 340°, or where a standard rotary potentiometer cannot be connected to the actuator shaft. Applications for this device include closed loop feedback to achieve accurate position, velocity, or motion control. This option can also be used on open-loop systems as continuous, infinite position monitoring device.

OPERATION:

A potentiometer is a variable resistor. There are three electrical terminals on the potentiometer - two on opposite ends of a fixed conductive plastic element (terminals 1 and 3, see electrical schematic on the right) and one attached to the "wiper" that moves along the conductive element with the piston and rack. As the wiper moves along the element, resistance between terminal 2 and terminals 1 and 3 charges.

Because the resistance of the potentiometer is linear (± .1%), when a fixed voltage level is supplied across terminals 1 and 3, shaft position can be determined by reading the output voltage at terminal 2. By measuring the rate of change in voltage at terminal 2, rotational velocity can be determined. Since the linear potentiometer is enclosed in the actuator itself, it is safe for operation in dirty or wet environments.

ORDERING INFORMATION:

Consult the factory or your local representative for specific application and ordering information.

LINEAR POTENTIOMETER SPECIFICATIONS:

• Potentiometer: Calibrated conductive film with

low resistance wiper carriage.

• Resistance: Approx. 1 K ohm per inch of

stroke

• Resistance Tolerance: ± 20%

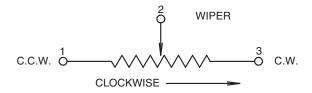
· Linearity: 0.1% of full stroke Voltage: 5 - 50vdc

• Resolution: Essentially infinite*

 Repeatability: 0.001*

Power rating: 70°C - 1 watt/cm²

125°C - 0 watt/cm2

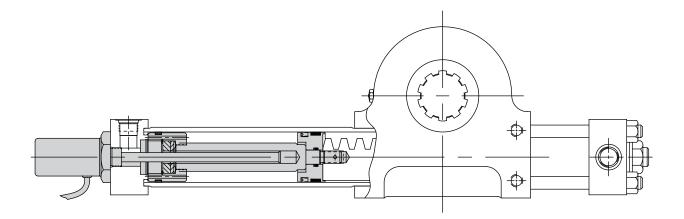

 Temperature Rating: -55°C to 125°C Pressure Rating: 3.000 psi

• Terminal: 3 pin micro connector

Available on:

Rack & Pinion* -HTR Series M Series

• Electrical Schematic:


NOTE:

- *1. Rack and pinion actuators have a small amount of backlash - consider before applying.
- 2. Electrohydraulic options and operation may affect other actuator components such as seals, bearings, etc.

Consult your local representative for additional information.

LDT FEEDBACK PACKAGE (MTS Temposonics)

APPLICATION:

The linear displacement transducer (LDT) option provides digital feedback of the rack position via interaction between two magnetic fields. The LDT option is recommended for applications where rotation exceeds 340°, or where a standard rotary potentiometer or resolver cannot be connected to the actuator output shaft. Applications for this device include closed loop feedback to achieve accurate position, velocity, or motion control. This option can also be used on openloop systems as a continuous, infinite position monitoring device.

OPERATION:

The LDT utilizes two magnets, a permanent one located on the piston, the other is a magnetic pulse generated by a current pulse along a wire inside a waveguide tube. The interaction between the fields produces a strain pulse which travels down the waveguide tube and is sensed by a coil at the end of the device. Position and velocity of the permanent magnet is pinpointed by measuring the lapsed time between the launching of the current pulse and the arrival of the strain pulse. An interface box converts this information to a usable output form, either digital or analog.

ORDERING INFORMATION:

Actuators can be provided as complete packages or with drilling and mounting for customers purchased LDTs. Consult the factory or your local representative for specific application and ordering information.

LDT SPECIFICATIONS:

• Linearity: ±.05% of full stroke (min. ±.002 in.)*

• Repeatability: ±.0001 in.*

Temperature

Coefficient (probe): <10 ppm/°F

• Temperature Coefficient (electronics box):

Digital: <10 ppm/°F Analog: 55 ppm/°F

• Resolution*:

Digital: .004, .002, .001 or .0005 available*
Analog: Stepless continuous output*

• Output:

Digital: Absolute, TTL compatible, parallel

or serial

Analog: -10 to +10 Vdc and 20mA range

• Operating Temperature:

Digital: 0° to 150°F Analog: 35° to 150°F • Hysteresis: .0008 in.*

• Available on:

Rack & Pinion* - HTR Series

M Series

NOTE:

- *1. Rack and pinion actuators have a small amount of backlash consider before applying.
- Electrohydraulic options and operation may affect other actuator components such as seals, bearings, etc.
 Consult your local representative for additional information.

Rotary Actuators

List of Symbols	2
Introduction	
Types of Rotary Actuators	3
Table 1: Rotary Actuator Applications	4
Table 2: Rotary Actuator Comparision Chart	7
Calculating Torque Requirements	8
Demand Torque Examples (English)	9
Table 3: Mass Moments of Inertia	10
Applied Torque Examples	11
Sizing Rotary Actuators	19
Minimum Possible Rotary Actuator Volume (S.I. Units)	21
Coverting Volume per Radian to Volume Displacement (S.I. Units)	21
Minimum Possible Rotary Actuator Volume (English Units)	22
Coverting Volume per Radian to Volume Displacement (English Units)	22
Table 4: Converting Vs to V	24
Calculating Required Pump Flow	25
Circuit Recommendations	28
Installation Instructions and Options	30

Reprinted from Bul. 0292-B1 Design Engineer's Handbook, Vol. 1 - Hydraulics.

Copyright© 2001 by Parker Hannifin Corporation, all rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means: electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

Printed in The United States of America

List of Symbols

A	Area	T_C	Cushion torque
d	Diameter	T_{D}	Demand torque
F	Force	T_f	Friction torque
g_c	Gravitational constant (386 in/sec ²)	V	Volume displacement
I	Mass mount of inertia	V_s	Specific Volume in terms of in ³ per radian
m	Mass	***	W7 * 1.
P	Pressure	W	Weight
P_{C}	Average cushion pressure	X	Distance or position
		α	Angular acceleration
P_{r}	Relief valve pressure		
Q	Volumetric flow rate	μ	Coefficient of friction
r	Radius	θ	Angular displacement or rotation
r_b	Bearing radius	ω	Angular velocity
t	Time	ω_{o}	Angular velocity at time = o
Т	Torque	$\boldsymbol{\omega}_t$	Angular velocity at time = t
T_{α}	Angular acceleration torque		
T_{α^*}	Angular deceleration torque		

Rotary Actuators

Introduction

A rotary actuator is the most compact device available for producing torque from hydraulic or pneumatic pressure. A self-contained unit, it is usually limited to one revolution or less and can provide oscillating motion as well as high and constant torque. Figure 1 shows the standard symbol for pneumatic and hydraulic rotary actuators.

There are many types of rotary actuators, each with design advantages as well as compromises. The three most commonly used are rack and pinion, vane, and helical. These type actuators are compared in Table 3 on page 7.

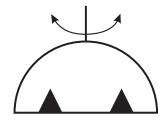


Figure 1 Hydraulic rotary actuator symbol

Types of Rotary Actuators

Rack and Pinion

Rack and pinion actuators consist of a housing to support a pinion which is driven by a rack with cylinder pistons on the ends (see Fig. 2). Theoretical torque output T, is the product of the cylinder piston area A, operating pressure P, and the pitch radius of the pinion $r_{\rm p}$.

Equation 1) $T = PAr_n$

Single, double, or multiple rack designs are possible and overall efficiencies for rack and pinion units average 85 to 90%. Because standard cylinder components can be used to drive the rack, many standard cylinder features can be incorporated into rack and pinion actuators, such as cushions, stroke adjusters, proximity switches, and special porting. Additionally, virtually leakproof seals will allow the actuator to be held in any position under load.

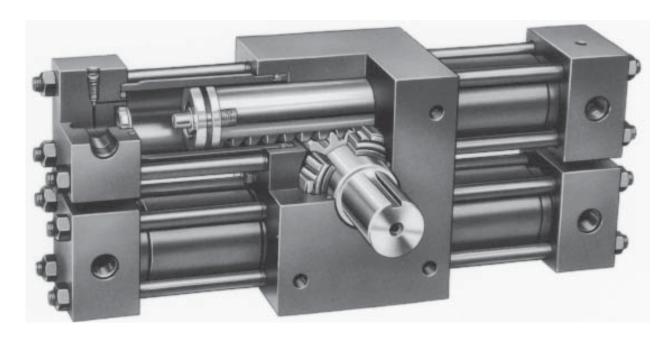


Figure 2 Rack and pinion type rotary actuator, double rack design

Figure 3 Mill type actuator design

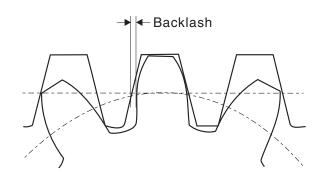


Figure 4 Gear backlash affects position accuracy

NOTE: Some systems require a mechanical locking device for safety reasons, or for holding loads over extended periods of time.

Both tie-rod and mill cylinder type (Fig. 3) constructions are available, and most types allow for service of all pressure containing seals without removing the unit from its mounting.

Rack and pinion actuators cover the widest range of torque, from 0.9 N•m (8 lb. in.) pneumatic to over 5,630,630 N•m (50,000,000 lb. in.) in hydraulic units. Because of their construction, they are not limited to 0.2π rad (360 degrees) of rotation and can easily be built to 10π rad (1800 degrees) (five revolutions). The majority of rack and pinion style actuators are sold for hydraulic service, generally 34 to 207 bar (500 to 3000 psi).

Position repeatability in rack and pinion actuators is affected by the inherent backlash found in any gear arrangement. Backlash is the amount by which the width of a tooth space exceeds the thickness of the mating tooth and can be as much as $\pi/360$ (0.5 degrees) on smaller size units (Fig. 4). It should be noted, however, that this backlash can be reduced to almost nothing by preloading the rack into the pinion, but efficiencies will suffer to overcome the added friction.

Because the load ratings of the bearings used to support the pinion are large in comparison to the internal loading of the unit, extra bearing capacity is usually available. This can eliminate the need for machine support bearings, or handle overhung and thrust loads which would be detrimental to other types of rotary actuators. In other applications, a hollow pinion is used, which eliminates the need for a coupling and support brackets because the actuator can be mounted directly onto the input shaft.

Table 1: Rotary Actuator Applications

General Industry

Camming, indexing, clamping, positioning, tensioning, braking, tilting, etc.

Material Handling

Switching conveyors, turning and positioning container clamps on lift trucks, tensioning and guiding, operating valves, braking, lifting

Robotics

Rotation and positioning

Marine

Opening and closing hatches, swinging cargo handling gear, opening and closing fire and collision bulkhead doors, operating large valves of all types, positioning hydrofoils, steering control

Steel

Upending coils, turnstiles, rollover devices, tilting electric furnaces, indexing transfer tables, charging furnaces

In general, rack and pinion actuators have a thin profile, but are not as physically compact as other styles of rotary actuators, and are usually slightly more expensive than vane actuators of equivalent torque output.

Vane

Vane style actuators consist of one or two vanes attached to a shaft (called the rotor), which is assembled into a body, and then held in place by two heads (Fig. 5). Rotation of single vane units is generally limited to 4.9 rad (280 degrees) by a fluid barrier (called a stator). Double vane units are limited to 1.7 rad (100 degrees) because two stators are required at opposite ends. The operating medium (air or oil) is ported across the shaft in double vane style actuators to eliminate the need for four ports. Fluid pressure acting on the exposed vane surface produces an output torque, shown in Equation 2:

Equation 2) T = LWP

Where the torque T is equal to the product of the vane length L, times the vane width W, times the system pressure P, times the radial distance r from the center of the rotor to the vane pressure center. Of course, a double vane style actuator will have twice the area of a single vane style actuator, and therefore twice the torque.

Available industry sizes range from a minimum of 1.4 N•m (12 lb. in.) with small pneumatic actuators to a maximum of 84460 N•m (750,000 lb. in.) with high pressure hydraulic actuators.

Vane style actuators have no backlash, but because of the seal configuration, cannot hold position without pressure being applied. The vane seal typically has sharp corners to seal in the body/head interface. Since this corner cannot be sealed completely, there is always a slight bypass flow. There is additional bypass flow in the shoulder area of the vane, so

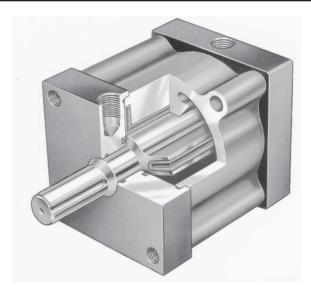


Figure 5 Vane type rotary actuaor

even rounding the vane at the top does not completely eliminate leakage. Vane actuators require external stops to prevent damage to the vane and stator, especially for high inertia and high speed applications.

Vane actuators are very compact devices and are typically less expensive than rack and pinion units of equivalent torque and pressure. Units are available with and without external shaft load capacity.

Vane actuators can be segmented into three general product lines:

- 1) Small pneumatic actuators for small parts handling, fixturing, etc.
- 2) 69 bar (1000 psi) hydraulic actuators for machine tool, automotive equipment, and transfer lines.
- 3) 207 bar (3000 psi) actuators for the mobile equipment industry.

Helical

Helical actuators consist of a piston sleeve, which functions similarly to a cylinder piston, and a rotating output shaft encased in a cylinder type housing (See Fig. 7). The linear motion of the piston sleeve produces rotary motion of the output shaft through the male helix cut on the shaft and a fixed helical nut. The torque output is proportional to the helix angle, system pressure, piston area, and the mean pitch radius of the helical shaft.

Helix designs provide maximum torque output for the smallest possible cross section. Double helix designs are also available to reduce the length of the unit or double the torque output.

Helical units are generally the most expensive rotary actuators but also the most compact. They do have backlash and can be made self-locking with special helix designs. Helical units can be hydraulically or pneumatically operated and are available from 2.3 to 450,451 N•m (20 lb. in. to 4,000,000 lb. in.) of torque.

Helical Type Actuators

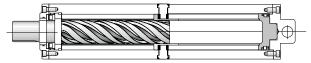


Figure 7a Initial position

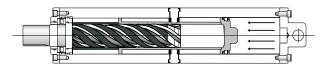


Figure 7b Pressure moves the sleeve causing the helix to rotate.

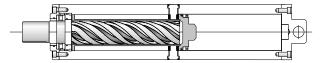


Figure 7c Final position

Table 2: Rotary Actuator Comparison Chart

Feature	Rack & Pinion	Vane	Helical
Load holding ability	Leakproof cylinder seals allow holding of load in any position.	Square vane seals and shoulder seals always have slight bypass flow.	Leakproof cylinder seals will allow holding of load in any position.
Positioning	Inherent backlash of rack and pinion cause position tolerance up to ½°.	Zero backlash allows for exact positioning anywhere in the rotation.	Some backlash, but can be made locking with special helix designs.
Efficiency (hydraulic)	90% is average	75-80% is average	60% is average
Stops	External stops usually not required.	Internal stops available for some light duty applications; majority of applications require positive external stops.	External stops usually not required.
Cushions	Standard cylinder cushions be used.	Typically no cushions available. Parker HRN Series offers these.	Consult manufacturer
Size	Thin profile but larger overall space and weight requirements	Very compact, especially cross section	The most compact cross section for a given torque
Maintenance	Maintenance of pressure seals possible without complete disassembly of unit.	Maintenance of vane requires disassembly of unit.	Maintenance of seals requires disassembly of unit.
Mounting	Mounting styles include lug, foot, face, base, flange or shaft mounting with hollow pinion.	Mounting styles include base, foot, face or flange mounting.	Mounting styles include foot, flange or body mounting.
Operating Medium	Air or hydraulic operation	Air or hydraulic operation	Air or hydraulic operation
Available Rotation	90°, 180° and 360° standard, specials to 1800°	280° maximum single vane unit, 100° maximum double vane unit	Consult manufacturer; specials made to order
Price	Generally more expensive than equivalent torque vane units	Generally less expensive than equivalent torque rack and pinion units	Generally much more expensive than equivalent rack and pinion units

Calculating Torque Requirements

Design torque

Design torque represents the maximum torque that an actuator must supply in an application. This maximum is the greater of the Demand Torque or the Cushion Torque. If the demand torque exceeds what the actuator can supply, the actuator will either move too slowly or stall. If the cushion torque is too high, the actuator may be damaged by excessive pressure. Demand torque and cushion torque are defined below in terms of load, friction, and acceleration torque.

Equations for calculating demand torque and cushion torque for some general applications are provided on the following pages.

T - Torque

The amount of turning effort exerted by a rotary actuator.

T_D - Demand Torque

This is the torque required from the actuator to do the job and is the sum of the load torque, friction torque, and acceleration torque, multiplied by an appropriate design factor. Design factors vary with the applications and the designers' knowledge.

Equation 3)
$$T_D = T_\alpha + T_f + T_L$$

T_I - Load torque

This is the torque required to equal the weight or force of the load. For example, in Fig. 8a, the load torque is 563 N•M (5000 lb-in.); in Fig. 8b the load torque is zero; in Fig. 8c the load torque is 563 N•m (5000 lb-in.). The load torque term is intended to encompass all torque components that aren't included in the friction or acceleration terms.

T_f - Friction torque

This is the torque required to overcome friction between any moving parts, especially bearing surfaces. In Fig. 8a, the friction torque is zero for the hanging load; in Fig. 8b the friction torque is 775 N•m (6880 lb-in) for the sliding load; in Fig. 8c the friction torque is zero for the clamp.

Equation 4)
$$T_f = \mu Wr$$

T_{α} - Acceleration Torque

This is the torque required to overcome the inertia of the load in order to provide a required acceleration or deceleration. In Fig. 8a the load is suspended motionless so there is no acceleration. In Fig. 8b, the load is accelerated from 0 to some specified angular velocity. If the mass moment of inertia about the axis of rotation is I and the angular acceleration is α , the acceleration torque is equal to $I\alpha$. In Fig. 8c there is no acceleration.

Some values for mass moment of inertia are given in Table 3. Some useful equations for determining α are listed in Table 5. Equation 5 below shows the general equation for acceleration torque.

Equation 5)
$$T_{\alpha} = I\alpha$$

T_C - Cushion Torque

This is the torque that the actuator must apply to provide a required deceleration. This torque is generated by restricting the flow out of the actuator (meter-out) so as to create a back pressure which decelerates the load. This back pressure (deceleration) often must overcome both the inertia of the load and the driving pressure (system pressure) from the pump. See applications.

Equation 6)
$$T_C = T_{\alpha^*} + \frac{P_r V}{\theta} - T_f \pm T_L$$

The friction torque T_f reduces the torque the actuator must apply to stop the load. The load torque T_L may add to, or subtract from the torque required from the actuator, depending upon the orientation of the load torque. For example, a weight being swung upward would result in a load torque that is subtracted.

Warning: Rapid deceleration can cause high pressure intensification at the outlet of the actuator. Always insure that cushion pressure does not exceed the manufacturer's pressure rating for the actuator.

8

Calculating Torque Requirements

Demand Torque Examples

A) Due to load torque

The load is held motionless as shown.

$$\begin{split} T_D &= T_\alpha + T_f + T_L \\ T_\alpha &= 0 \\ T_f &= 0 \\ T_L &= (500 \text{ lb})(10 \text{ in}) = 5,000 \text{ lb-in} \\ T_D &= 5,000 \text{ lb-in} \end{split}$$

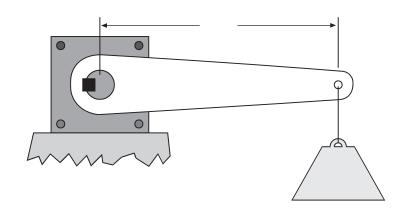


Figure 8a

B) Due to friction and acceleration

The 500 lb rotating index table is supported by bearings with a coefficient of friction of .25. The table's acceleration α is 2 rad/sec². The table's mass moment of inertia I is 2,330 lb-in sec^2 .

$$\begin{split} T_D &= T_\alpha + T_f + T_L \\ T_\alpha &= I\alpha = (2,330 \text{ lb-in-sec}^2)(2/\text{sec}^2) = 4,660 \text{ lb-in} \\ T_f &= \mu W r_b = 0.25 \text{ (500 lb)(55 in)} = 6,880 \text{ lb-in} \\ T_L &= 0 \\ T_D &= 4,660 \text{ lb-in} + 6,880 \text{ lb-in} = 11,540 \text{ lb-in} \end{split}$$

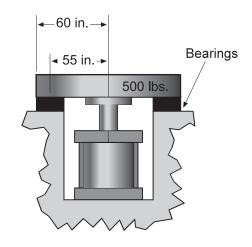


Figure 8b

C) Due to load torque $T_D = T_{\alpha} + T_f + T_I$

$$T_{\alpha} = 0$$

$$T_f = 0$$

$$T_I = (500 \text{ lb})(10 \text{ in}) = 5,000 \text{ lb-in}$$

$$T_D = 5,000 \text{ lb-in}$$

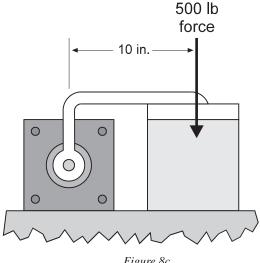
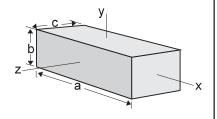


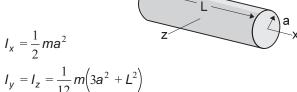
Figure 8c

9


Table 3: Mass Moments of Inertia

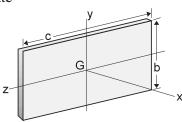
Rectangular prism

$$I_{x} = \frac{1}{12} m(b^{2} + c^{2})$$


$$I_{y} = \frac{1}{12} m(c^{2} + a^{2})$$

$$I_{z} = \frac{1}{12} m(a^{2} + b^{2})$$

Circular cylinder

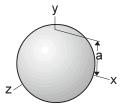


Thin rectangular plate

$$I_x = \frac{1}{12} m \left(b^2 + c^2 \right)$$

$$I_y = \frac{1}{12} mc^2$$

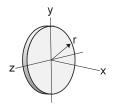
$$I_z = \frac{1}{12} mb^2$$


Circular cone

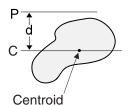
$$I_x = \frac{3}{10} ma^2$$

$$I_y = I_z = \frac{3}{5} m \left(\frac{1}{4} a^2 + h^2 \right)$$

Sphere


$$I_x = I_y = I_z = \frac{2}{5} ma^2$$

Thin disk


$$I_x = \frac{1}{2}mr^2$$

$$I_y = I_z = \frac{1}{4} mr^2$$

Parallel Axis Theorem:

$$I_p = \bar{I} + md^2$$

 I_p = Mass moment of inertia about an axis parallel to a centroidal axis.

 I_C = Mass moment of inertia about a centrodidal axis.

m = Mass

d = distance between axes

When acceleration is constant:

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\alpha = \frac{2\theta}{t^2}$$

$$\theta = \omega_0 t + \frac{1}{2} \omega_t t$$

$$\alpha = \frac{(\omega_t - \omega_0)^2}{2\theta}$$

$$\omega = \omega_0 + \alpha$$

$$\omega = (\omega_0^2 + 2\alpha\theta)^{1/2}$$

$$\alpha = \frac{(\omega_t - \omega_0)}{t}$$

When velocity is constant:

$$\theta = \omega t$$

t = time

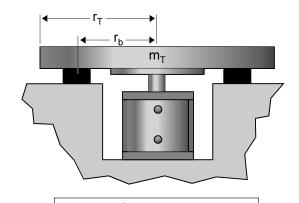
 θ = angular distance

 ω_t = angular velocity at time = t

 ω_0 = angular velocity at time = 0

 α = angular acceleration

Round Index Table	12
Rotary Index Table with Rectangular Load	12
Rotary Index Table with Cylindrical Load	13
Wire or Round Tube Bending	13
Screw Clamping	14
Simple Clamp	14
Linear Motion, Clamping	15
Modified Linear Motion, Clamping	15
Overcenter Load	16
Harmonic Drive	16-18


NOTES:

- 1. The following equations are intended only as a guide. The design engineer should verify the accuracy of the equations and insure that all performance, safety and warning requirements of the application are met.
- 2. Unless specified otherwise, the following examples do not take into account actuator efficiency, system efficiency, friction or needed safety factors.
- 3. Deceleration torques are based upon the assumption that restrictor type flow controls force the pump to exert maximum pressure during deceleration. This is denoted as P.
- 4. Symbol followed by * indicates a deceleration.

Applied Torque Examples

Round Index Table

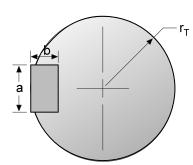
$$T_D = \frac{1}{2} m_1 r_1^2 \alpha + \mu W_1 r_b$$
$$T_C = \frac{1}{2} m_1 r_1^2 \alpha + I_1 \alpha$$

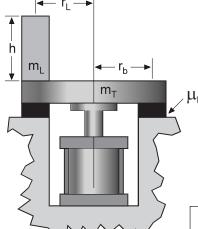
A round index table that must overcome bearing friction and inertia. Assumptions, see notes 1, 2, and 3.

$$T_D = T_{\alpha} + T_f + T_L$$

$$T_L = 0, \text{ no load}$$

$$T_f = \mu W_1 r_b, \text{ where } W_1 = m_1 g_C$$


$$T_{\alpha} = I_1 \alpha$$


$$I_1 = \frac{1}{2} m_1 r_1^2$$

$$T_C = \frac{P_r V}{\theta} + T_{\alpha^*} - T_f \pm T_L$$

$$P_C = T_C \left[\frac{\theta}{V} \right]$$

Rotay Index Table with Rectangular Load

An index table rotating in a horizontal plane with a rectangular box. It must overcome bearing friction and inertia. Assumptions, see notes 1, 2, and 3.

$$T_D = T_{\alpha} + T_f + T_L$$

$$T_L = 0, \text{ no load}$$

$$T_f = (W_T + W_L)r_b\mu_b,$$

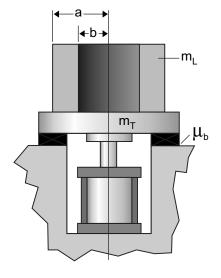
$$where W_T = m_Tg_C, W_L = m_Lg_C$$

$$T_{\alpha} = (I_T + I_L)\alpha$$

$$I_T = \frac{1}{2}m_Tr_T^2$$

$$I_L = \frac{1}{12}m_L(a^2 + b^2) + m_Lr_L^2$$

$$T_C = \frac{P_r V}{\theta} + T_{\alpha^*} - T_f \pm T_L$$
$$T_{\alpha^*} = (I_T + I_L)\alpha^*$$


$$P_C = T_C \left[\frac{\theta}{V} \right]$$

$$T_{D} = (W_{T} + W_{L})r_{b}\mu_{b} + \alpha \left[\frac{1}{2}m_{T}r_{T}^{2} + \frac{1}{12}m_{L}(a^{2} + b^{2}) + m_{L}r_{L}^{2}\right]$$

$$T_{C} = (\alpha + \alpha^{*})\left[\frac{1}{2}m_{T}r_{T}^{2} + \frac{1}{12}m_{L}(a^{2} + b^{2}) + m_{L}r_{L}^{2}\right]$$

Applied Torque Examples

Rotary Index Table with Cylindrical Load

lindrical load. It must overcome bearing friction and inertia. Assumptions, see notes 1, 2, and 3 on page 4-12.

$$T_D = T_{cc} + T_f + T_L$$

An index table rotating in a horizontal plane with a cy-

$$T_{D} = T_{\alpha} + T_{f} + T_{L}$$

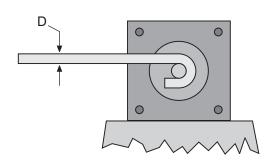
$$T_{L} = 0, \text{ no load}$$

$$T_{f} = (W_{T} + W_{L})r_{b}\mu_{b},$$

$$T_{\alpha} = (I_{T} + I_{L})\alpha$$

$$I_{T} = \frac{1}{2}m_{T}r_{T}^{2}$$

$$I_{L} = \frac{1}{2}m_{L}(a^{2} - b^{2})$$


$$T_{C} = \frac{P_{r}V}{\theta} + T_{\alpha^{*}} - T_{f} \pm T_{L} \qquad P_{C} = T_{C} \left[\frac{\theta}{V}\right]$$

$$T_{\alpha^{*}} = (I_{T} + I_{L})\alpha^{*}$$

$$T_{D} = (W_{T} + W_{L})r_{b}\mu_{b} + \frac{\alpha}{2} [m_{T}r_{T}^{2} + m_{L}(a^{2} - b^{2})]$$

$$T_{C} = \frac{1}{2} (\alpha + \alpha^{*}) [m_{T}r_{T}^{2} + m_{L}(a^{2} - b^{2})]$$

Wire or Round Tube Bending

No acceleration,
$$T_{\alpha} = 0$$

No friction, $T_f = 0$

$$T_D = T_L$$

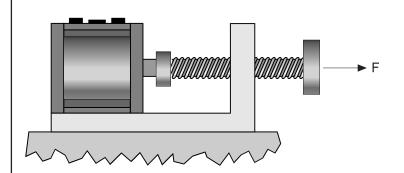
$$T_L = \sigma_y \frac{I}{C}$$

Round tubing: $T_D = \frac{\pi}{32} \left(\frac{D^4 - d^4}{D} \right) \sigma_y$

 $T_D = \frac{\pi \sigma_y D^3}{32}$ Round wire:

 σ_v = yield stress of the material (available from mechanical engineering texts)

 $\frac{1}{c}$ = section modulus of the tube or wire (can be calculated or found in materials handbooks)


D = Outer diameter of wire or tube

d = Inside diameter of tube

Engineering

Screw Clamping

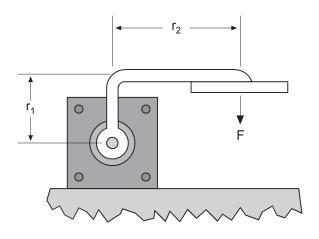
Screw clamp with no acceleration, neglecting friction.

$$T_D = T_\alpha + T_f + T_L$$

$$T_{\alpha} = 0$$

$$T_f = 0$$
 *see note below

$$T_L = \frac{Fp}{2\pi}$$


p = threads per inch

F = clamping force

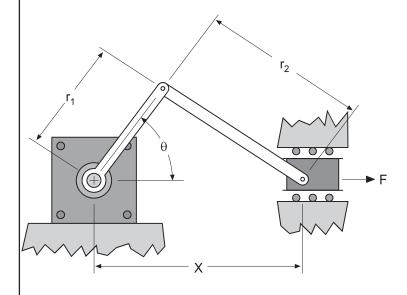
*Friction torque could vary significantly based upon screw type, lubrication type, and bearings. To better approximate screw friction torque consult a machine design handbook.

Simple Clamp

A simple clamping mechanism with no friction or acceleration.

$$T_D = T_\alpha + T_f + T_L$$

$$T_{\alpha} = 0$$


$$T_f = 0$$

$$T_L = Fr_2$$

This clamping mechanism may be suitable for holding down parts for assembly, but does not have the mechanical advantage or the linear motion provided in the next two examples.

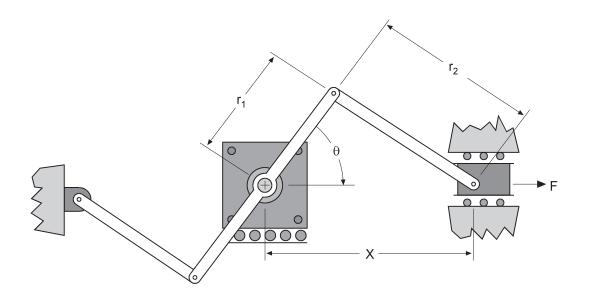
1800_engr.pmd, M&A

This type of clamp is characterized by a long stroke and a high clamping force as θ approaches zero.*

$$T_{D} = T_{\alpha} + T_{f} + T_{L}$$

$$T_{\alpha} = 0$$

$$T_{f} = 0$$

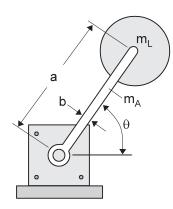

$$T_{L} = \frac{Fr_{1}}{2} \left[\frac{\sin 2\theta}{x - r_{1} \sin \theta} + 2 \sin \theta \right]$$

$$x = r_1 \cos \theta + \sqrt{r_2^2 - r_1^2 \sin^2 \theta}$$

*To maintain control, θ should never be allowed to equal zero. Also, the force F should not be allowed to exceed the actuator's bearing capacity.

Improved Linear Motion, Clamping

Same as above, except that force is not limited by the actuator's bearing capacity.


*To maintain control, θ should never be allowed to equal zero.

1800_engr.pmd, M&A

Applied Torque Examples

Overcenter Load

If the mass m_L is not free to rotate about its center, then its mass moment of inertia about its own center I_L must be included in the equations for T_a and T_{a*} as follows:

$$T_{\alpha} = \left[\frac{1}{12} \ m_{A}(a^{2} + b^{2}) + I_{L} + m_{L}a^{2} \right] \alpha$$

$$T_{\alpha^{*}} = \left[\frac{1}{12} \ m_{A}(a^{2} + b^{2}) + I_{L} + m_{L}a^{2} \right] \alpha^{*}$$

The load is rotated in a vertical plane. Load torque T_L is positive or negative depending upon position and direction of rotation. If the load resists the actuator's rotation, then T_L is positive. The mass m_L is free to rotate about its center

$$T_D = T_{\alpha} + T_f + T_L$$

$$T_{\alpha} = I\alpha = \left[\frac{1}{12} m_A (a^2 + b^2) + m_L a^2\right] \alpha$$

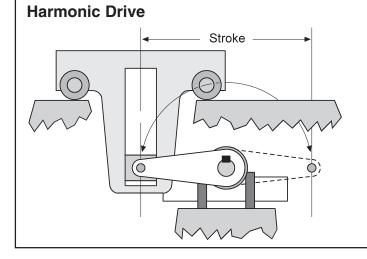
$$T_f = r_b \mu_b (W_L + W_A)$$

 r_b = shaft bearing radius, not shown

 μ_b = bearing coefficient of friction

In most cases T_f will be very small compared to T_f .

$$T_{L} = \pm a \cos \theta \left[\frac{1}{2} W_{A} + W_{L} \right]$$


$$T_{D,MAX} = a \left[\frac{1}{2} W_{A} + W_{L} \right] + T_{f} + T_{\alpha}$$

$$T_{C} = \frac{P_{r}V}{\theta} + T_{\alpha^{*}} - T_{f} \pm T_{L}$$

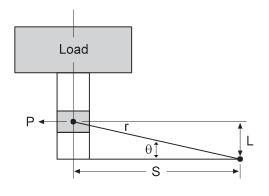
$$T_{C,MAX} = \frac{P_{r}V}{\theta} + T_{\alpha^{*}} - T_{f} + a \cos \theta \left(\frac{1}{2} W_{A} + W_{L} \right)$$

$$T_{\alpha^{*}} = I\alpha^{*} = \left[\frac{1}{12} m_{A} (a^{2} + b^{2}) + m_{L} a^{2} \right] \alpha^{*}$$

$$P_{C} = T_{C} \left[\frac{\theta}{V} \right]$$

A harmonic linkage, as shown, is a compact and low cost method of providing linear motion with a very smooth acceleration.

Flow controls can be adjusted to provide the smooth acceleration and deceleration necessary to handle fragile parts such as bottles or light bulbs.


The smooth acceleration and deceleration also enables optimum cycle times for handling automotive components on transfer lines.

A schematic model of the harmonic drive is shown on the following page. The equations for demand torque, $T_{\rm D}$ will be defined in terms of the schematic model.

continued ...

 $T_D = Actuator demand torque$

r = Torque arm length

 $L = rsin\theta$

 $S = Stroke = rcos\theta$

W = Weight of the load

P = Bearing force against the slide

g = Gravitational acceleration

 μ_{τ} = Friction coefficient of the load

 μ_S = Friction coefficient of the slide

 θ = Actuator rotation in radians

 ω = Angular velocity in rad/sec

t = time in seconds

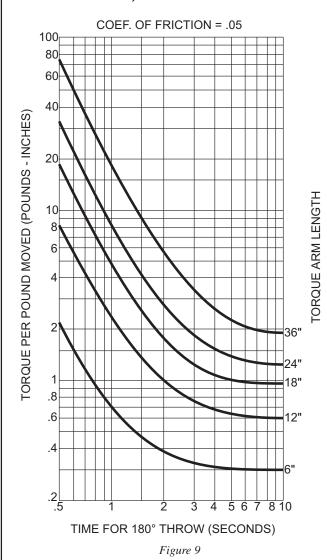
A general equation can be derived relating the torque needed T_D to the object weight W, radius r, friction coefficients μ_S and μ_L , and the angular position θ . Because the position is expected to change with time t, the product of time and angular velocity ω t is substituted for θ in the equations below.

$$\text{A.)} \quad \frac{T_D}{W} = \frac{r^2 \omega^2}{g} \cos \omega t \sin \omega t + \frac{r^2 \omega^2 \mu_S}{g} \cos^2 \omega t + r \mu_L \sin \omega t + r \mu_L \mu_S \cos \omega t$$

Equation A gives the ratio of torque per weight for any time throughout the motion of the harmonic drive. To select an actuator it is the worst case torque that must be used for calculating T_D . The worst case, or maximum demand torque, can be calculated by taking the derivative of equation A with respect to time and solving for when the derivative is equal to zero. For reference the derivative of equation A with respect to time is given as equation B below.

B.)
$$\frac{d(T_D/W)}{dt} = \frac{r\omega^2}{g} (2\cos^2 \omega t - 1) - \frac{2r\omega^2 \mu_S}{g} \cos \omega t \sin \omega t + \mu_L \cos \omega t - \mu_L \mu_S \sin \omega t$$

Equations A and B have been solved to create the graphs on the next page for coefficients of friction of 0.05 and 0.25 respectively. (For the graphs, the coefficients μ_S and μ_L are set equal to each other.)


The preceding equations assume a constant angular velocity ω ; as the inertia from the moving load tends to drive the actuator during the deceleration phase, it is recommended that pressure compensated restrictor type flow controls be used.

C.)
$$T_C = \frac{P_r V}{\theta} + T_D - W \left[\frac{T_D}{W} \text{ (evaluated at 10 second throw time on graph)} \right]$$

Where P_r is the relief valve pressure, V is the actuator displacement, and θ is the actuators rated rotation in radians.

Engineering

Harmonic Drive, continued

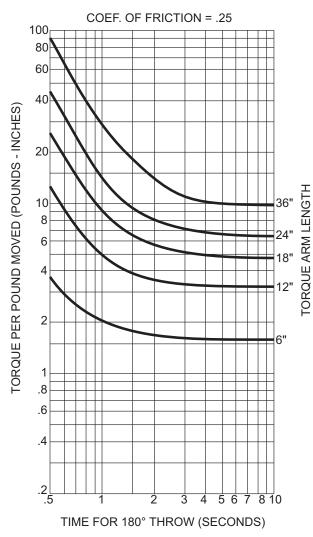


Figure 10

Example1E: A 400 lb block must be moved 48 inches in 4 seconds with a harmonic drive. The block and the slide are supported with roller bearings (coeff. of friction = 0.05) a.) Calculate the demand torque T_D required. b.) Calculate the cushion torque if a 180° rotary actuator with a displacement V of 7.6 in 3 is chosen, and the relief valve pressure P_r is set at 500 psi.

Solution:

a.) Use the curves for coef. of friction = 0.05 and draw a line from the 4 seconds on the time axis to intersect with the 24 inch torque arm curve.

 $\frac{48 \text{ in travel}}{2}$ = 24 in torque arm length

The intersecting line shows a requirement for $T_D/W = 1.5$: $T_D = 1.5 (400 \text{ lb}) = 600 \text{ lb-in}$ answer

b.) Use equation C from the previous page to calculate the cushion torque T_C:

$$T_C = \frac{500 \ psi \ (7.6 \ in^3)}{\pi} + 600 \ lb-in - \left(\frac{1.2 \ lb-in}{lb}\right) (400 \ lb) = 1,329 \ lb-in$$
 answer

1800 engr.pmd, M&A

Engineering

Sizing Rotary Actuators

The smallest rotary actuator displacement, that can be used in an application, is that displacement which can both deliver sufficient torque to move the load and also withstand the pressure required to stop the load. (Recall that cushion torque is generated by back pressure that is often greater than system pressure.) A method of determining the smallest rotary actuator displacement is summarized in Fig. 11 and outlined step-by-step below. (Also see the example problem on page 23.)

Note: This method is for constant torque rotary actuators such as vane, rack and pinion, or helical styles.

- A. Determine the maximum allowable safe system pressure P_r that the pump and components can tolerate. This is typically the highest pressure the pump can supply to the system; however, this is not the actual system working pressure. The actual working pressure is determined after an actuator is selected.
- B. Calculate the demand torque required. The demand torque T_D is given by equation 3 repeated here:

$$T_D = T_\alpha + T_f + T_L$$

Definitions for the above torque components and examples for calculation of T_D were discussed previously under the heading "Calculating Torque Requirements."

C. Calculate V/ θ based upon T_D and the maximum system pressure chosen in Step A. V/ θ is the volume displacement per one radian of rotation for a rotary actuator. V/ θ can be calculated from the Equation 7, or by using Fig. 14. (Fig. 12 for S.I. units).

Equation 7)
$$\frac{V}{\theta} = \frac{T_D}{P_r}$$

D. Calculate the cushion torque T_C required. In any application where the actuator has cushions, a deceleration valve, or any form of meter-out flow control, the flow out of the actuator is restricted creating a back pressure on the outlet side of the actuator. This back pressure is what creates the cushion torque which acts to decelerate, or cushion the actuator as it approaches the end of its rotation. The cushion torque can be calculated by the methods presented under the heading "Calculating Torque Requirements."

E. Calculate the cushion pressure P_C , for the rotary actuator with V/ θ as calculated in step C, and T_C as calculated in step D. Use Equation 8:

Equation 8)
$$P_C = T_C \left[\frac{\theta}{V} \right]$$

Note: Equation 8 calculates the *average* back pressure P_C, *not* the *maximum* back pressure. In most cases back pressure will not be constant and will exceed the average value calculated here.

- F. If the value for P_C is considered impractical for your application, some ways to lower it are:
 - 1. Reduce system pressure, then recalculate Steps C through E.
 - 2. Increase the time for deceleration, then recalculate Steps D and E.
 - 3. Use an external shock absorber.
- G. Calculate the needed displacement V for the rotation you need. Use Equation 9 or Fig. 15. (Fig. 13 for S.I. units.)

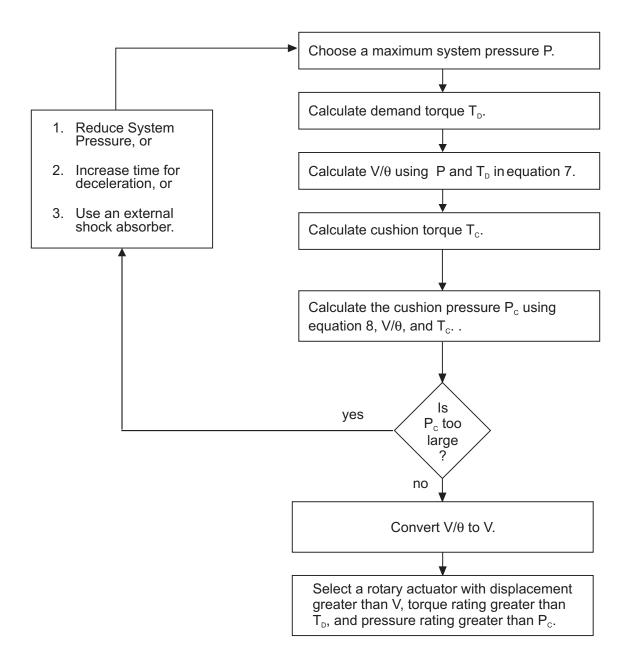
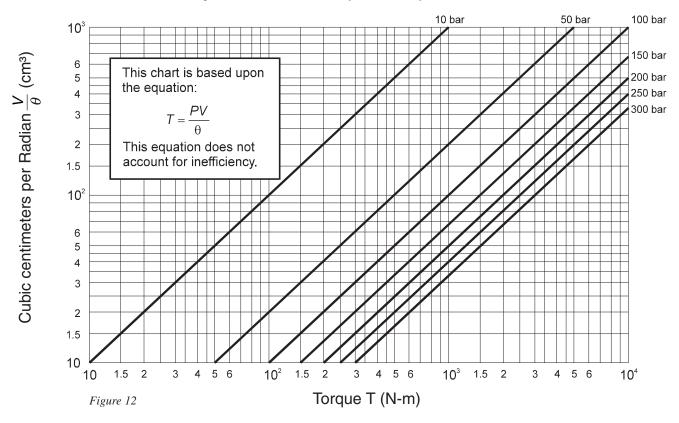
Equation 9)
$$V = \theta \left[\frac{V}{\theta} \right]$$

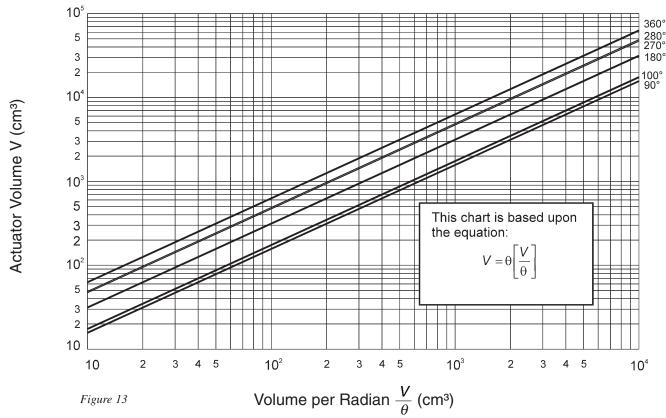
H. Select a rotary actuator with a torque rating greater than T_D , a displacement greater than V, and a pressure rating greater than P_C . Calculate system operating pressure P based upon the selected actuator's rated torque T, and the selected actuator's V/θ value using Equation 10 or Fig. 12.

Equation 10)
$$P = T \left[\frac{V}{\theta} \right]$$

The relief valve setting P_r must be less than the maximum pressure from Step A, must be greater than P calculated in Equation 10, must not exceed the actuator's rated working pressure, and must be high enough to compensate for pressure drop through valves and lines.

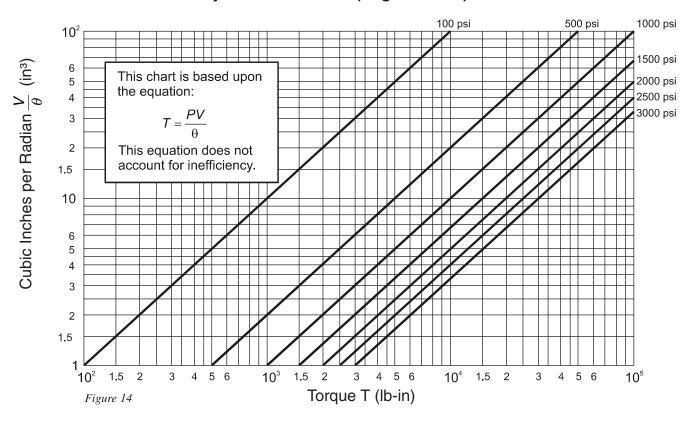
Actuator Flow Chart

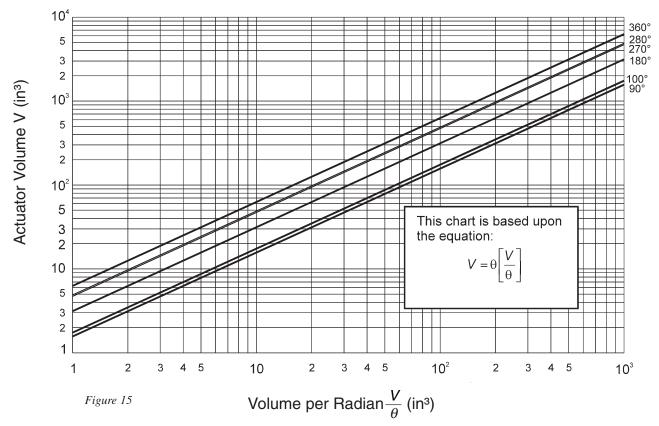

Figure 11: Flow chart for selecting a minimum volume actuator. See example problem page 23.

Minimum Possible Rotary Actuator Volume (S.I. Units)

Coverting Volume per Radian to Volume Displacement (S.I. Units)



1800_engr.pmd, M&A



Sizing

Minimum Possible Rotary Actuator Volume (English Units)

Coverting Volume per Radian to Volume Displacement (English Units)

60 in -

← 40 in-

500 lb

 $\mu = 0.10$

Example 2E: For the rotary index table shown, calculate the minimum requirements for an actuator to turn the index table 180°. Use $\alpha = \alpha^* = 2.5 \text{ rad/sec}^2$, $P_r = 1000 \text{ psi}$.

Solution: Use the flow chart Fig. 11, on page 20.

- A.) The supply pressure P_r is given as 1000 psi.
- B.) Calculate the demand torque T_D:

$$T_D = T_\alpha + T_f + T_L$$

$$T_{\alpha} = I\alpha$$

$$I = \frac{1}{2} mr^2 = \frac{1}{2} \left(\frac{500 \text{ lb}}{386 \text{ in/sec}^2} \right) (60 \text{ in})^2 = 2332 \text{ lb-in-sec}^2$$

$$\alpha = 2.5 \text{ rad/sec}^2$$

$$T_{\alpha} = (2332 \text{ lb-in-sec}^2)(2.5 \text{ rad/sec}^2) = 5,830 \text{ lb-in}$$

$$T_f = \mu W r_b = (0.10)(500 \text{ lb})(40 \text{ in}) = 2,000 \text{ lb-in}$$

$$T_I = 0$$

$$T_D = 5,830 \text{ lb-in} + 2,000 \text{ lb-in} + 0 = 7,830 \text{ lb-in}$$

C.) Calculate $\frac{V}{\theta}$ use Equation 7 or Fig. 14:

$$\frac{V}{\theta} = \frac{T_D}{P_r} = \frac{7,830 \text{ lb-in}}{1000 \text{ psi}} = 7.83 \text{ in}^3$$

D.) Calculate cushion torque T_C (see equations for Rotary Index Table)

$$T_C = \frac{P_r V}{\theta} + T_{\alpha^*} - T_f + T_L = 1000 \ psi \ (7.83 \ in^3) + 5,830 \ lb-in - 2000 \ lb-in + 0 = 11,660 \ lb-in$$

Notice that since the rate of deceleration α^* is the same as the rate of acceleration α , the deceleration torque T_{α^*} is the same as the acceleration torque T_{α} .

E.) Calculate the cushion pressure P_C:

$$P_C = T_C \left[\frac{\theta}{V} \right] = \frac{11,660 \text{ lb-in}}{7.83 \text{ in}^3} = 1,489 \text{ psi}$$

- F.) Is the cushion pressure too high? The cushion pressure (1,489 psi) is within the capability of most hydraulic rotary actuators. In cases where P_C becomes the dominant selection criteria, the designer should consider repeating the sizing calculations with a lower value for P_r , decreasing the deceleration rate α^* , or using an external shock absorber.
- G.) Calculate the displacement V for the 180° rotation. Use Equation 9 or Fig. 15.

$$V = \theta \left[\frac{V}{\theta} \right] = \pi (7.83 \text{ in}^3) = 24.6 \text{ in}^3$$

H.) Select a rotary actuator with a torque rating greater than 7,830 lb-in with a supply pressure of 1000 psi, it will have a displacement greater than 24.6 in³, and must have a maximum pressure rating over 1,489 psi.

1800_engr.pmd, M&A

TABLE 4: CONVERT Vs to V

Based upon equation $V_S\theta = V$ for converting specific volume into volume.

ACTUATOR ROTATION VOLUME

	ACTUATOR ROTATION (DEGREES)					
Vs	90	100	180	270	280	360
10	15.71	17.45	31.42	47.13	48.86	62.84
11	17.28	19.20	34.56	51.84	53.75	69.12
12	18.85	20.94	37.70	56.56 5	8.63	75.41
13	20.42	22.69	40.84	61.27	63.52	81.69
14	21.99	24.43	43.98	65.98	68.40	87.98
15	23.57	26.18	47.13	70.70	73.29	94.26
16	25.14	27.92	50.27	75.41	78.18	100.5
17	26.71	29.67	53.41	80.12	83.06	106.8
18	28.28	31.41	56.55	84.83	87.95	113.1
19	29.85	33.16	59.70	89.55	92.83	119.4
20	31.42	34.90	62.84	94.26	97.72	125.7
22	34.56	38.39	69.12	103.7	107.5	138.2
24	37.70	41.88	75.41	113.1	117.3	150.8
26	40.84	45.37	81.69	122.5	127.0	163.4
28	43.99	48.86	87.98	132.0	136.8	176.0
30	47.13	52.35	94.26	141.4	146.6	188.5
32	50.27	55.84	100.5	150.8	156.4	201.1
34	53.41	59.33	106.8	160.2	166.1	213.7
36	56.56	62.82	113.1	169.7	175.9	226.2
38	59.70	66.31	119.4	179.1	185.7	238.8
40	62.84	69.80	125.7	188.5	195.4	251.4
42	65.98	73.29	132.0	197.9	205.2	263.9
44	69.12	76.78	138.2	207.4	215.0	276.5
46	72.27	80.27	144.5	216.8	224.8	289.1
48	75.41	83.76	150.8	226.2	234.5	301.6
50	78.55	87.25	157.1	235.7	244.3	314.2
55	86.41	95.98	172.8	259.2	268.7	345.6
60	94.26	104.7	188.5	282.8	293.2	377.0
65	102.12	113.4	204.2	306.3	317.6	408.5
70	109.97	122.2	219.9	329.9	342.0	439.9
75	117.83	130.9	235.7	353.5	366.5	471.3
80	125.68	139.6	251.4	377.0	390.9	502.7
85	133.54	148.3	267.1	400.6	415.3	534.1
90	141.39	157.1	282.8	424.2	439.7	565.6
95	149.25	165.8	298.5	447.7	464.2	597.0
100	157.1	174.5	314.2	471.3	488.6	628.4

Calculating Required Pump Flow

The flow rate required for a rotary actuator can be determined by the desired time for rotation and the rotary actuator's displacement. This is shown in Equation 5.

The equation is also plotted as Figure 16.

$$Q = \frac{V}{t}$$

where Q = Flow rate

V = Rotary actuator displacement

t = Time to fill displacement

EXAMPLE: A 280° vane rotary actuator is chosen to provide a 194° rotation in 2 seconds. If the rotary actuator's displacement is 77.8 in³, find what flow rate is required from the pump. Assume constant angular velocity.

SOLUTION: The actuator is only rotating 194°, so the volume of oil required for this rotation is:

 $V = 77.8 \text{ in}^3 (194/280)$

 $V = 53.9 \text{ in}^3 \text{ for } 194^\circ \text{ rotation}$

 $Q = \frac{V}{t}$

 $Q = \frac{59.3 \ in^3 \ (60 \ sec/min)}{2 \ sec \ (231 \ in^3/gal)} = 7 \ \text{GPM} \ \ \text{ANSWER}$

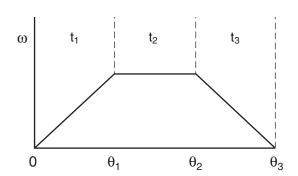
EXAMPLE: A 180° rack and pinion rotary actuator is to accelerate from 0 to some angular velocity w during its first 10° of rotation, then remain at that angular velocity for the next 150° of rotation, then decelerate back to 0 radians/sec during the last 20°. The actuator is to rotate the total 180° in less than 2 seconds. If the actuator's displacement is 36 in³, find:

- A. The angular velocity w after the first 10° of rotation
- B. The pump flow rate required for the rotary actuator
- C. The pump flow required if the actuator traveled the entire 180° in 2 seconds at a constant angular velocity

SOLUTION:

A. Assume constant acceleration during the first 10° and constant deceleration during the last 20° .

$$2 \sec = t_1 + t_2 + t_3$$


$$t_1 = 2 \frac{\theta_1 - 0}{\omega} = \frac{2}{\omega} (10^\circ) \frac{\pi}{180^\circ} = \frac{1}{\omega} (.35)$$

$$t_2 = \frac{\theta_2 - \theta_1}{\omega} = \frac{1}{\omega} (150^\circ) \frac{\pi}{180^\circ} = \frac{1}{\omega} (2.62)$$

$$t_3 = 2 \frac{\theta_3 - \theta_2}{\omega} = \frac{2}{\omega} (20^\circ) \frac{\pi}{180^\circ} = \frac{1}{\omega} (.70)$$

$$2 \sec = \frac{1}{\omega} [.35 + 2.62 + .70]$$

 ω = 1.83 rad/sec **ANSWER**

CONTINUED ON NEXT PAGE

1800 engr.pmd, M&A

EXAMPLE CONTINUED

B. 180° rotary actuator has a volume displacement of 36 in 3. The cubin inches per radian can be expressed as:

$$V_s = \frac{V}{\theta} = \frac{36 \text{ in}^3}{\pi} \text{ radians}$$

$$V_s = 11.5 in^3/radian$$

NOTE:
$$180^{\circ} = p \text{ radians}$$

The actuator must be able to rotate at 1.83 rad/sec so the pump flow must be:

$$Q = V_s \omega$$

$$Q = (11.5 \text{ in}^3/\text{radian}) (1.83 \text{ rad/sec}) \frac{1 \text{ gal}}{231 \text{ in}^3} \frac{60 \text{ sec}}{\text{min}}$$

$$Q = 5.5 \text{ GPM}$$
 ANSWER

C. If the entire 180° were traversed at constant speed in 2 seconds, the pump flow would be:

$$Q = \frac{V}{t}$$

$$Q = \frac{38 \text{ in}^3}{2 \text{ sec}} \frac{1 \text{ gal}}{231 \text{ in}^3} \frac{60 \text{ sec}}{\text{min}}$$

$$Q = 4.7 \text{ GPM}$$
 ANSWER

Notice that in the above example, it is necessary to take into account the time required for acceleration and deceleration of the actuator in order to determine the maximum velocity required. It is the maximum velocity of the actuator that will determine the maximum flow required. Equations for velocity and acceleration are provided on page 10 in Table 5.

1800 engr.pmd, M&A

Time/Revolution vs. Volume

Based on 100% efficiency and the equation:

t = .26 V/Q

where t = time/rev. in seconds

 $V = displacement in in^3$

Q = oil flow in GPM

TIME/REVOLUTION VS. VOLUME

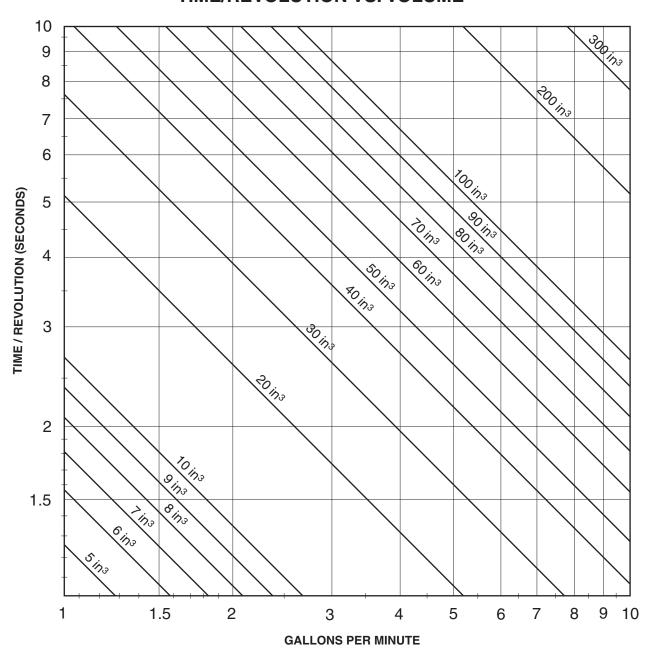


Figure 16

Composite Hydraulic Circuit

When designing hydraulic operating circuits for rotary actuators, consideration should be given to the following criteria:

- 1. actuator rotational velocity
- 2. kinetic energy developed
- 3. actuator holding requirement
- 4. system filtration

Figure 17 is a composite drawing showing general recommendations for sample circuitry. It is intended as a guide only. Flow control valves (1) in the meter-out position provide controlled actuator velocity. Care should be taken if the load moves overcenter, as the combination of load and pump generated pressure may exceed the actuator rating.

To protect the actuator and other system components from shock pressures caused when the actuator is suddenly stopped in mid-stroke, crossover relief valves (2) should be installed as close to the actuator as possible. These relief valves also protect the actuator and system if the load increases and "back drives" the hydraulic system.

In applications involving high speeds or heavy loads, the built up kinetic energy may be too much for cushions to absorb during their 20° of operation. By using cam or lever operated deceleration valves (3) the deceleration arc can be increased beyond 20° so that kinetic energy can be absorbed more gradually and without overpressuring the actuator. Where there is a need to hold the load in intermediate positions for extended periods of time, pilot operated check valves (4) should be used. These must be used with leakproof actuator seals to hold the load in position; any bypass flow allows eventual drifting of the load.

Warning: For safety reasons, some applications require a mechanical locking device for holding loads over an extended period of time.

As with most standard hydraulic circuits, rotary actuator applications should have filtration to provide a continuous cleanliness rating of no more than 390 particles greater than 10 micron per milliliter of fluid. This is an ISO 17/14 fluid cleanliness classification. Filters (5) should be fitted and maintained to ensure this minimum level.

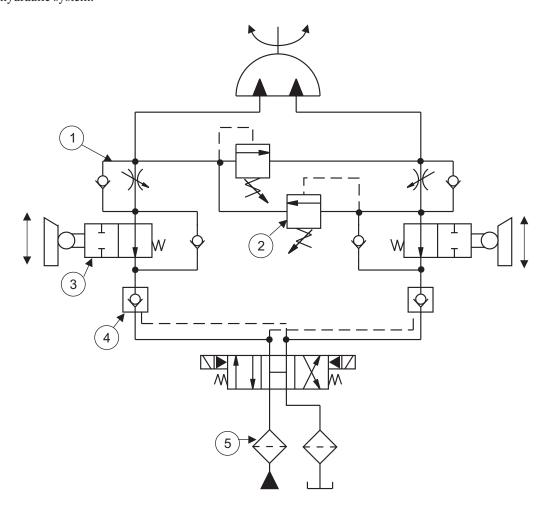


Figure 17 Hydraulic rotary actuator circuit

Electrohydraulic Circuitry

The use of electrohydraulic components for rotary actuator applications can provide greater system flexibility. Figure 18 is a representative circuit showing some possible applications of electrohydraulic valves. Proportional or servo control valves (1) can provide continuous position, velocity or acceleration control of loads, and "closing the loop" around a position feedback device and can provide even greater control and velocity profiles for overcenter or varying loads. Even more precise position control is possible with the use of vane actuators or anti-backlash devices on rack and pinion units.

Torque control can also be achieved with servovalve (1) by taking advantage of the valve's pressure gain region.

All of the considerations from the composite hydraulic circuit (Fig. 17) are still relevant. Crossover relief valves (3) should be installed if there are uncontrolled sudden stops in mid-stroke, and caution should be exercised when running overcenter, running with high speeds, or moving high inertia loads. Filtration (4) is still a consideration, but the actuator requirements (ISO 17/14 class) are usually less demanding than the filtration requirements of today's electrohydraulic control valves.

Figure 18 Electrohydraulic rotary actuator circuit

Installation Instructions and Options

A. Stops

Vane units should not use the vane and stator as a positive stop. For light to medium loads, an internal taper lock stop, or external stops mounted to the machine framework, may be used. For high inertia or high speed loads, externally mounted valving or deceleration devices should be used to minimize system shocks.

Rack and pinion units can be stopped at the end of stroke provided the loads and speeds are not too high. Cushions can be used to decelerate the load to a gentle stop, providing the maximum actuator pressure rating is not exceeded by the cushions. Again, for high inertia or high speed loads, externally mounted valving or deceleration devices should be used to minimize system shocks.

B. Surge Pressures

Surge or shock pressure in excess of the actuator rated pressure are detrimental to unit life and must be avoided. Crossover relief valves mounted adjacent to the actuator can help reduce these abnormal pressure peaks.

Pressure developed by cushion or deceleration valves should also be kept below rated pressure.

C. Angular Velocity

Angular velocity can be controlled by metering the flow into or out of the actuator ports. This can be accomplished by the use of flow control valves; or if more sophisticated control is required, through the use of proportional or servo valves.

Care should be taken when using a meter-out circuit if the load moves over center, as the combination of load and pump generated pressures may exceed the actuator rating.

D. Drains

Some actuators are fitted with drain ports to minimize external leakage possibilities. These drain ports should be connected directly back to the oil reservoir with a minimum of back pressure (3.5 bar / 50 psi maximum).

E. Gear Chamber

Some rack and pinion actuators are supplied with the gear chambers filled with a molybdenum disulfide grease to better absorb gear stress and extend gear life. This chamber should be checked and filled periodically to ensure adequate gear lubrication. The housing can be fitted with a small relief valve that vents excess pressure in the gear chamber to the atmosphere. This is an indication of pressure seal wear, because high pressure oil is bypassing the piston seal and pressuring the gear chamber. The piston seals should then be replaced.

F. Fluid Medium and Seals

For hydraulic usage, a clean, filtered, high-quality mineral-based hydraulic fluid with 150 to 500 S.U.S. viscosity at 100°F is recommended for use with standard Buna N seals. Cleanliness should be maintained to an ISO code 17/14 level.

Standard seal compound is Buna N for mineral-based hydraulic fluid. Other seal materials can be provided for most operating fluids. If there is a question about the correct seal compound, provide the name and type of operating fluid to the actuator manufacturer and ask for their recommendation.

G. Shaft Couplings

Couplings should engage the full length of the shaft keyway and pressure should only be applied after support has been provided on the opposite end of the shaft. Shafts should be within 0.005 TIR to ensure proper alignment.

Installation & Maintenance

Maintenance and Service

LTR Series	2
LTR Series Piston Seal	7
HTR Series	8
HTR Series Piston Seal	11
M Series	12
Tork-Mor	17

Additional information may be obtained from Pneumatic Division in Wadsworth, Ohio, or from the nearest Pneumatic Division Representative.

LTR Series Actuators

Maintenance Instructions & Parts List

Provide Model Number and Serial Number When Ordering Spare Parts.

The LTR Series Actuators will provide superior performance in heavy duty pneumatic and medium duty hydraulic applications. The LTR Series "Wear-Pak" piston sealing configurations and anti-friction ball bearings are used to guarantee low breakaway pressure and eliminate erratic motion at low speeds.

In the event that maintenance is required, the following steps should be used as a guide. It is recommended that a suitable oil or O-ring lubrication compatible with the operating media, such as Parker Lube-A-Cyl, be used on all seals and mating parts to facilitate assembly.

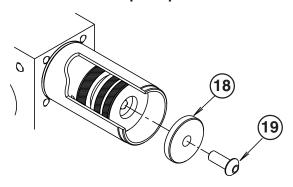
A. Inspection & Replacement of Piston Seal, #10, Wear Rings, #15, and O-Ring End Cap, #12.

- 1. Remove Tie Rod Nuts, #17 from Tie Rods, #8.
- 2. Pull End Cap, #16 free from Cylinder Tube, #14.
- 3. Pull Cylinder Tube, #14 free from Housing, #13.
- 4. Push Piston, #11 free from Cylinder Tube, #14.
- 5. Inspect and/or replace Piston Seal, #10, Wear Rings, #15, and O-Ring End Cap, #12.
- 6. Inspect and/or replace O-Ring Cylinder, #7 (for LTR Models only).
- 7. Reassemble as shown in figure and torque Tie Rod Nuts, #17 per Torque Table.

B. Inspection & Replacement of Bearing, #2.

- 1. Remove Retaining Ring, #1.
- 2. Press Pinion, #3, and Bearing #2 from housing, #13.
- 3. Press Bearing, #2 free from Pinion, #3.
- 4. Inspect or replace Bearing, #2.
- 5. Press new Bearing, #2 into Housing, #13.
- 6. Replace Pinion, #3 into Housing, #13.
- 7. Press remaining new Bearing, #2 onto Pinion, #3.
- 8. Replace Retaining Ring, #1.

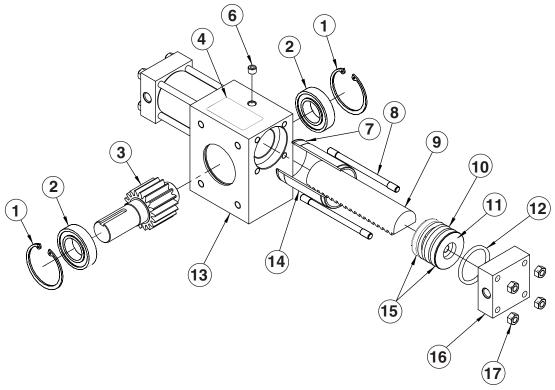
NOTE:


Prior to assembly of an LTR Series actuator, the rack and pinion are coated with a molycoat GN paste and a moly grease containing a minimum MSO₂ content of 3%, such as Texaco Molytex EP2.

AL FLANGE BOLT #46 5 10 17 40 40 130

ITEM		QUAI	QUANTITY		
NO.	DESCRIPTION	SINGLE RACK	DOUBLE RACK		
1	RETAINING RING	2	2		
2	BEARING	2	2		
3	PINION	1	1		
4	NAME PLATE	1	1		
6	PLUG	1	1		
7*	O-RING, CYLINDER TUBE ¹	2	4		
8	TIE ROD	8	16		
9	RACK	1	2		
10*	PISTON SEAL	2	4		
11	PISTON	2	4		
12*	O-RING, END CAP	2	4		
13	HOUSING	1	1		
14	CYLINDER TUBE	2	4		
15*	WEAR RING	4	8		
16	END CAP	2	4		
17	TIE ROD NUT	8	16		
18	BUMPER	1x	1x		
19	BUMPER BOLT	1x	1x		

Bumper Option

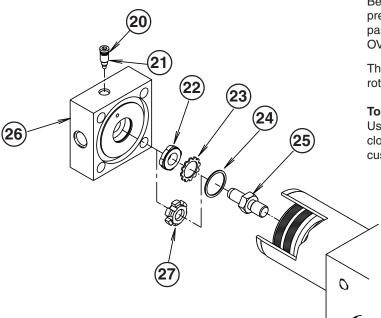


Built in polyurethane bumper pads absorb shock and noise, thus permitting faster cycle times and increased production rates. Recommended torque value for Bumper Bolt, item #19, is shown in Torque Table.

All items marked with an asterick (*) are included in a complete seal kit.

¹ = Only used on units with steel cylinder tubes. (LTR units)

x = Quantity as required per end cap option specified.



PTR/LTR MODEL		NUT #17 JBE MATERIAL	BUMPER BOLT #19	PISTON BOLT #36 CUSHION PLUG	SHAFT SEAL SCREW #50	FLANGE BOLT #46
	ALUMINUM	STEEL		#25		
101/102	1.5	_	3	3	3	5
151/152	3	5	6	6	3	10
201/202	6	11	20	20	3	17
251/252	6	11	20	20	3	40
321/322	15	20	50	50	3	130

1800_maint.pmd, M&A

Cushion Option

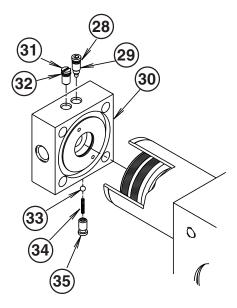
ITEM	DESCRIPTION	QTY.
20	O-RING, ADJUSTMENT SCREW	1
21	CUSHION ADJUSTMENT SCREW	1
22	CUSHION SEAL	1
23	CUSHION SEAL WASHER ¹	1
24	RETAINING RING ¹	1
25	CUSHION PLUG	1
26	END CAP	1
27	CUSHION BUSHING ²	1
28	O-RING, ADJUSTMENT SCREW	1
29	FLOW CONTROL ADJ. SCREW	1
30	END CAP	1
31	PLUG	1
32	O-RING, PLUG	1
33	CHECK BALL	1
34	CHECK SPRING	1
35	CHECK PLUG	1

NOTE: Quantities shown are as required per end cap option specified.

- ¹ = Cushion seal configuration for use with pneumatic service.
- ² = Cushion bushing for use with hydraulic service.

Schematic

CAUTION:


Before making any adjustment, turn off the system pressure. Never adjust cushion adjustment screw out past flush with end cap or counterbore. DO NOT OVERTIGHTEN.

The standard cushions operate over the last 30° of rotation in either or both directions.

To Adjust:

Using an Allen wrench, turn Adjustment Screw, #21, clockwise or more cushioning, counterclockwise for less cushioning.

Port Flow Control Option

Built in meter-out flow controls provide for precise regulation of actuator speed and eliminate the cost and space of externally mounted components. A separate spring loaded ball check is used to provide free flow in the opposite direction.

When both cushions and port flow controls are specified they will be stamped "C" and "P" respectively.

Using an Allen wrench, turn Adjustment Screw, #29, clockwise for slower speed; counterclockwise for more

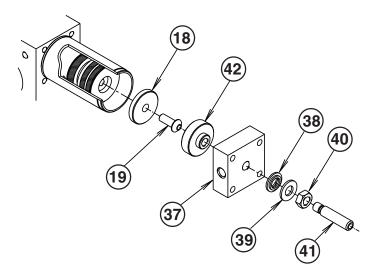
Stroke Adjust Options

Stroke adjusters will reduce the angle of rotation by 10° or 30° in either or both directions. Typical applications are for initial set up purposes where exact rotation requirements may change between various operations.

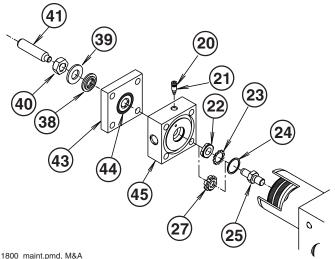
CAUTION: Before making any adjustments, turn off system pressure and ensure that no residual pressure exists in the actuator.

PTR/LTR MODEL	ONE COMPLETE TURN OF ADJUSTER CAUSES SPECIFIED CHANGE IN ROTATION
101/102	4.0°
151/152	4.6°
201/202	3.2°
251/252	3.2°
321/322	2.4°

Standard cushions operate over the last 30° of rotation. Stroke adjusters will decrease the cushion length by the same amount. For example, reducing the rotation by 5° yields 25° cushion length.


To Adjust:

- 1. Loosen Jam Nut, #40.
- 2. Turn Stroke Adjuster, #41 clockwise to reduce stroke, counterclockwise to increase stroke.
- 3. Tighten Jam Nut, #40.
- 4. Resume system pressure.

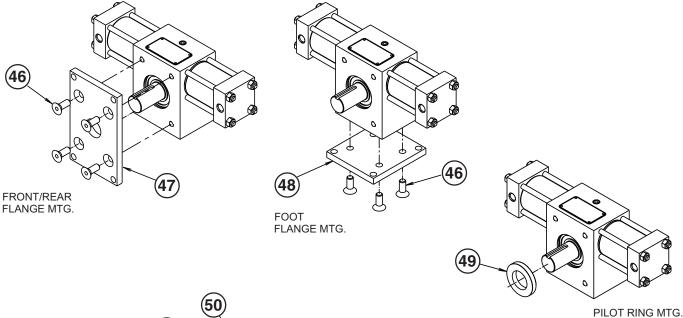

30° Stroke Adjust Option

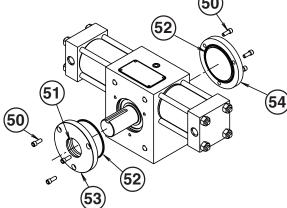
30° Stroke Adjust Option with Bumper

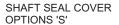
10° Stroke Adjustment with Cushion Option (Single Rack Units Only)

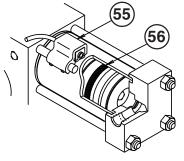
ITEM	DESCRIPTION	QTY.
36	PISTON BOLT	1
37	END CAP	1
38	THREAD SEAL	1
39	LOCK WASHER	1
40	JAM NUT	1
41	STROKE ADJUSTER	1
42	STROKE ADJUST HEAD	1
43	STROKE ADJUST BLOCK	1
44	O-RING, STROKE ADJUST BLOCK	1
45	END CAP	1

NOTE: Quantities shown are as required per end cap option specified.


Mounting Options


Mounting options utilize existing face and base mounting holes


Shaft seal covers are designed to prolong bearing life by isolating them from external contamination and pressure.

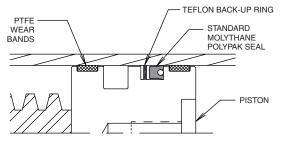

- **NOTE:** ¹ = Quantity is 2 if double-end shaft extension is specified.
 - ² = Quantity is 0 if double-end shaft extension is specified.

ITEM	DESCRIPTION	QTY.
46	FLANGE BOLT	4
47	FRONT FLANGE	1
48	FOOT FLANGE	1
49	PILOT RING	1
50	SHAFT SEAL COVER SCREW	6
51	SHAFT SEAL	11
52	O-RING	2
53	SHAFT SEAL COVER WITH HOLE	11
54	SHAFT SEAL COVER, SOLID	12

See next page for details on Items 55 & 56.

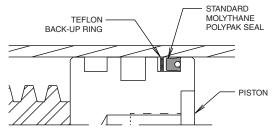
MAGNET PISTON RING OPTION 'M' W/SWITCH (ORDER SWITCH SEPARATELY)

ITEM	DESCRIPTION	QTY.
55	REED SWITCH KIT	1
	(Lead Type or Quick Connect)	
56	Magnet	2
57	HALL EFFECT SWITCH KIT	1
	(Lead Type or Quick Connect)	
58	PROXIMITY SWITCH	1
59	O-RING, ADAPTER BLOCK	1
60	SCREW, SPACER BLOCK	4
61	SPACER BLOCK	1
62	O-RING, SPACER BLOCK	1
63	END CAP	1
64	ADAPTER BLOCK	1
65	SCREW, ADAPTER BLOCK	2


NOTE: Quantities shown are as required *per end cap* option specified.

Seal Kit Ordering Information

- Standard units are equipped with Nitrile seals.
- Optional seal compounds are available.
- See parts list for items contained in seal kit.
- Seal kit part numbers as shown:


	_			
PSK	_	LTR322	V	
Parker Seal Kit		Base Model	Omit - Standard	
	1	V = Fluorocarbon		
			Q = Quad Ring Piston Seals	
			W = Carboxilated Nitrile Piston Seals	

NOTE: This seal kit contains parts to reseal Design Series "A", "B" or "C" LTR Series rotary actuators. If your actuator is a "C" Design Series, use the seals and wear bands provided to assemble the pistons as shown below left. If your actuator is Design Series "A" or "B", only the piston seal is required, as there will not be grooves to accept wear bands on these pistons. Assemble the piston seal provided in the groove which will be closest to the fluid pressure when the piston is reinstalled, as shown below right. Although these pistons have two seal grooves, the superior design of the piston seals which are now being utilized allows for more efficient performance than possible with the old design. Contact the factory or your local representative for information on how to update "A" or "B" Design actuators.

Design Series "C"

LTR Series rotary actuators with Design Series suffix "C" at the end of the model number have the piston/piston sealing configuration illustrated above. Each piston is equipped with two non-metallic wear bands and one standard Molythane Polypak seal with backup ring for superior wear resistance.

Design Series "A" & "B"

LTR Series rotary actuators with Design Series suffix "A" or "B" at the end of the model number should be reassembled with the piston/piston sealing configuration illustrated above. These models were originally equipped with two standard pneumatic lip seals with Teflon backup rings; this configuration is replaced with one standard Molythane Polypak seal with Teflon backup ring.

1800_maint.pmd, M&A

HTR Series Actuators

Maintenance Instructions & Parts List

Provide Model Number and Serial Number When Ordering Spare Parts.

GENERAL

HTR Series Hydraulic Rack & Pinion Actuators are designed for a maximum operating pressure of 3,000 psi non-shock.

The actuator consists of a Pinion and one or two Racks located within a Housing. Pressurization of alternate cylinder port(s) results in shaft rotation.

The gear chamber has been filled with a Moly grease containing a minimum Molybdenum Disulfide (MSO2) content of 3%.

In the event that maintenance is required, the following steps should be used as a guide:

ASSEMBLY AND DISASSEMBLY PROCEDURES

- A. Inspection & Replacement of End Cap Seals, #9.
 - Place actuator in the mid-stroke position as shown. Remove Tie Rod Nuts, #10, from Tie Rods, #13.
 - 2. Pull End Cap, #11, free from Cylinder Tube, #12.
 - Inspect and/or replace End Cap O-Ring, #9.
 Lubricate Seal and End Cap before reinstalling.
 - 4. Replace End Cap, #11, on Cylinder Tube, #12, and assemble Tie Rod Nuts, #10 to Tie Rods, #13.
 - 5. Torque Tie Rod Nuts per table.
- B. Inspection & Replacement of Wear Rings, #4, Piston Seals, #5, and Cylinder O-Ring, #8.
 - 1. Repeat Steps A1 and A2.

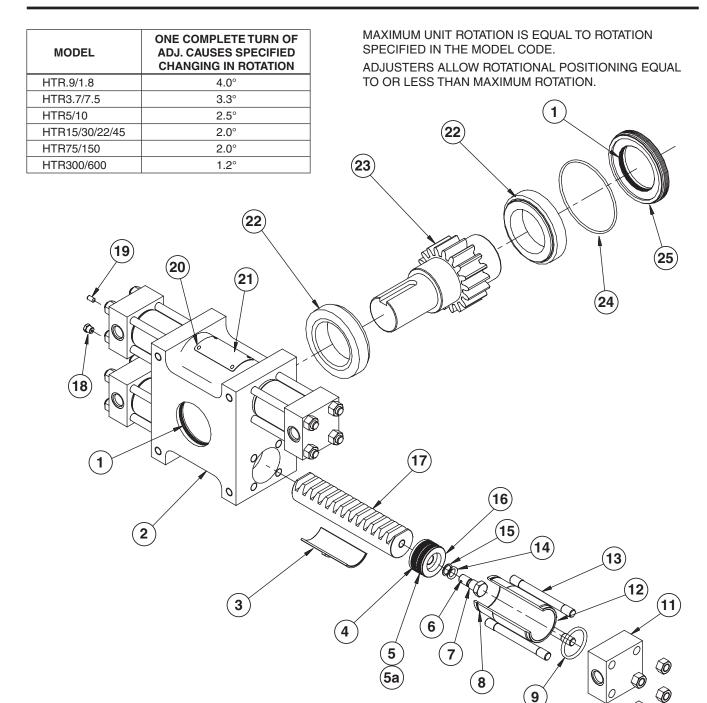
For Models HTR75 through HTR 600:

- 2. Remove Rack Bolt, #7.
- Screw two (2) threaded rods into the tapped holes in Piston, #16, and pull free from Cylinder Tube, #12.

For Models HTR.9 through HTR45:

- 4. Pull Cylinder Tube, #12, free from Housing, #2.
- 5. Remove Rack Bolt, #7.

For All Models


- 6. Inspect Piston, #16, and replace Piston Seal, #5.
- 7. Inspect and/or replace Wear Rings, #4.
- 8. Inspect and/or replace Cylinder O-Ring, #8.
- 9. Replace Cylinder Tube, #12 to Housing, #2.
- Slide Piston, #16, with Piston Seal and Wear Rings assembled onto it, into Cylinder Tube, #12, until it contacts Rack, #17.

- Replace Rack Bolt, #7 and torque per table.
 Caution: Nylon Slug, #6, is designed to prevent RackBolt from vibrating loose during operation; replace as required.
- Replace End Cap, #11, and Tie Rod Nuts, #10; torque per table.
- C. Inspection and Replacement of Pinion and Bearing Retainer O-Rings, #1 and #24.
 - 1. Loosen Lock Screw, #19.

Caution: Failure to do so will damage threads.

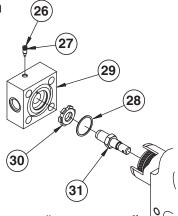
- 2. Using spanner wrench, remove Bearing Retainer, #25, by turning counter-clockwise.
- Remove Bearings, #22, and Pinion, #23.
 Caution: Make match marks to re-establish the correct timing.
- 4. Inspect and/or replace Pinion O-Ring, #1, located at the "front" or blind side of Housing #2.
- 5. Reinstall Bearings, #22, and Pinion #23.
- Inspect and/or replace Bearing Retainer O-Ring, #24, located on outside diameter of Bearing Retainer, #25.
- 7. Inspect and/or replace Pinion O-Ring, #1, located on inside diameter of Bearing Retainer, #25.
- 8. Apply Moly Grease to Bearing Retainer Threads and reinstall into Housing, #2.
- 9. Torque Bearing Retainer, #25 per table.
- Install and tighten Locking Screw, #19, per torque table.
- D. Complete Disassembly of Actuator.
 - 1. Repeat Steps A1 and A2.
 - 2. Repeat Steps B2 through B5.
 - 3. Repeat Steps C1 and C3.
 - Caution: Make match marks to re-establish the correct timing.
 - 5. Push Rack from either end to remove from housing.
- E. Reassembly of Actuator.
 - Follow previous procedures for reassembly of all actuator parts. Refill the gear chamber with Moly Grease with a minimum MSO2 content of 3%; such as Texaco Molytex EP2.

MODEL	TIE ROD NUT #10	RACK BOLT #7 CUSHION PLUG #31	BEARING	LOCKING SCREW #19
HTR.9/1.8	6	3	15	2
HTR3.7/7.5	15	15	30	4
HTR5/10	15	15	50	4
HTR15/30	30	40	100	4
HTR22/45	45	40	100	4
HTR75/150	130	130	250	15
HTR300/600	525	360	500	15

1800_maint.pmd, M&A

(10)

9


Parts Identification

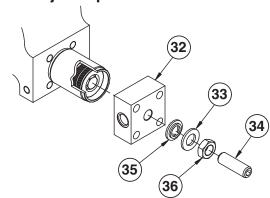
		QUANTITY					
ITEM NO.	DESCRIPTION	SINGLE RACK	DOUBLE RACK				
1*	O-RING, PINION	2	2				
2	HOUSING	1	1				
3	RACK BEARING	1	2				
4*	WEAR RING	2	4				
5*	PISTON SEAL	2	4				
5a*	BACK-UP RING	2	4				
6	NYLOK SLUG	2	4				
7	RACK BOLT	2	4				
8*	O-RING CYLINDER	2	4				
9*	O-RING, END CAP	2	4				
10	TIE ROD NUT	8	16				
11	END CAP	2	4				
12	CYLINDER TUBE	2	4				
13	TIE ROD	8	16				
14*	O-RING, RACK BOLT	2	4				
15*	BACK-UP RING, RACK BOLT	2	4				
16	PISTON	2	4				
17	RACK	1	2				
18	RELIEF VALVE	1	1				
19	LOCKING SCREW	1	1				
20	DRIVE SCREW	4	4				
21	NAME PLATE	1	1				
22	BEARING	2	2				
23	PINION	1	1				
24*	O-RING, BEARING RETAINER	1	1				
25	BEARING RETAINER	1	1				

NOTE:

- Items marked with an asterisk (*) included in a seal repair kit.
- 5a (BACK-UP RING) used only with Viton Seals.

Cushion Option

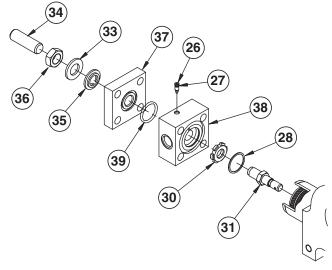
Caution: Before making any adjustment, turn off the hydraulic pressure. Never adjust Cushion Screw out past flush with End Cap or counterbore. DO NOT OVERTIGHTEN.


Adjustable cushions are designed to cushion the last 20° of actuator stroke.

To Adjust

Using an Allen wrench, turn Adjustment Screw, #13, counter clockwise for less cushioning.

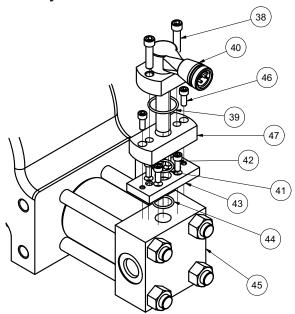
1800_maint.pmd, M&A



Caution: Before making any adjustment, turn off the hydraulic pressure. To Adjust:

- 1. Loosen Jam Nut, #31.
- Turn Stroke Adjusters, #30, CW to reduce stroke, CCW to increase stroke.
- 3. Tighten Jam Nut, #31.
- 4. Resume system pressure.

Cushion and Stroke Adjust Option



ITEM NO.	DESCRIPTION	QUANTITY			
26	CUSHION ADJUSTMENT SCREW	1			
27	O-RING, ADJUSTMENT SCREW	1			
28	RETAINING RING	1			
29	END CAP 1				
30	CUSHION BUSHING 1				
31	CUSHION PLUG 1				
32	END CAP 1				
33	WASHER 1				
34	STROKE ADJUSTER	1			
35	THREAD SEAL	1			
36	JAM NUT	1			
37	STROKE ADJUST BLOCK 1				
38	END CAP 1				
39	O-RING, STROKE ADJUST BLOCK	1			

NOTE: Quantities required are per end cap option specified.

Proximity Switches

Parts List					
ITEM NO.	DESCRIPTION QTY				
38	BOLT, PROXIMITY SWITCH 2				
39	O-RING, PROXIMITY SWITCH 1				
40	PROXIMITY SWITCH 1				
41	O-RING, SPACER BLOCK 1				
42	BOLT, ADAPTOR BLOCK 4				
43	ADAPTOR BLOCK 1				
44	O-RING, ADAPTOR BLOCK 1				
45	5 END CAP 1				
46	46 BOLT, SPACER BLOCK 2				
47 SPACER BLOCK 1					

Quantities required are per end cap.

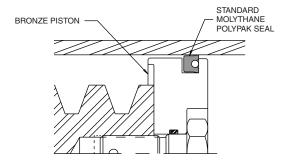
NOTES:

- 1. Available with or without cushions.
- 2. Not available with stroke adjusters.
- 3. Pressure rating: 3000 psi
- 4. Opearating temperature: -4°F to 158°F
- 5. Specify end cap position (1, 2, 3, 4), switch type, and voltage when ordering.
- 6. Switch Types:

EPS-7 Voltage 20 to 250 VAC/ DC EPS-6 Voltage 10 to 30 VDC

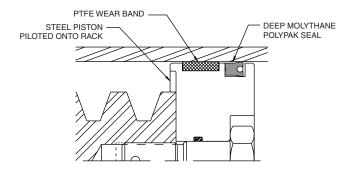
Seal Kit Ordering Information

- Standard units are equipped with nitrile seals.
- Optional seal compounds are available.
- See parts list for items contained in seal kits.
- Seal kit part numbers as follows:


PSK HTR.9 Base Model Parker Seal Kit

11

Omit = Standard V = Fluorocarbon W = Carboxilated Nitrile Piston Seals


V

NOTE: The seal kit is equipped with parts necessary to re-seal Design Series "A", "B" or "C" HTR Series rotary actuators.

Design Series "A" or "B"

HTR Series rotary actuators with a Design Series suffix of "A" or "B" at the end of the model number should be reassembled with the piston/pistonsealing configuration illustrated above. These models are equipped with a bronze piston and one "standard" Molythane Polypak piston seal.

Design Series "C"

HTR Series rotary actuators with a Design Series suffix of "C" at the end of the model number have the piston/piston sealing configuration illustrated above. Each piston is equipped with one non-metallic wear band and one "deep" Molythane Polypak piston seal for superior wear resistance.

1800 maint.pmd, M&A

M Series Actuators

Maintenance Instructions & Parts List

Provide Model Number and Serial Number When Ordering Spare Parts.

General

Limit the maximum operational pressure of the Parker M series rotary actuator to 3000 PSIG. Refer to the engineering catalog for operational specifications.

The actuator consists of the: rotary group which includes the rack gear and cylinder tubes; the pinion gear; the end cap group; the housing group; and the seal group.

The actuator rotates CCW when (facing the output shaft or mounting face) the lower left (and upper right) cylinder ports receive flow from a suitable power unit. Likewise, the actuator rotates CW when the lower right (and upper left) cylinder ports receive flow from a suitable power unit.

AAD lubricates the gear train with an EP grease that has a minimum MOS2 content of 3%. The factory installs TEXACO MOLYTEX EP(2) extreme pressure grease at assembly and test. If necessary, replenish the gear box lubricant with either MOLYTEX EP(2) lubricant or an equivalent.

Lubricant leakage from the housing relief valve is a symptom of a damaged piston seal and/or the cylinder tube bore. The urgency of repair depends upon the actuator's duty cycle and the rate at which the lubricant leaks from the housing. The typical repair involves replacing the piston seals; smoothing out any minor damage in the cylinder bore or replacing severely damaged cylinder tubes; and replacing or replenishing

the gear lubricant. Any good quality EP grease similar to TEXACO MOLYTEX EP(2) grease would be suitable.

In the event that a maintenance repair is needed, then we suggest using the following (outline) steps:

A. Inspection and Replacement of the End Cap O-Ring (14) and Back Up Ring (15)

- Rotate shaft to mid-stroke position. Remove the end cap bolts (2) and the flat washers (3).
- 2. Screw threaded rod into tapped holes of end cap (16) and push end cap (16) into cylinder tube (29) and stop when you see the keeper ring (17).
- Remove the keeper ring (17) by moving the short sides of the keeper rings radially into the cylinder; then move the larger top and bottom sides the same way.
- 4. Pull the end cap (16) out of the cylinder tube.
- Cushion equipped end caps: remove adjusting screw (40.)

Assembly

(Omit steps 6 & 7 if end cap is not equipped with the cushion feature.)

- 6. Inspect adjusting screw o-ring (39); replace if necessary.
- Install cushion adjusting screw into cushion equipped end cap.
- Inspect end cap o-ring (14) and back up ring (15); replace if necessary. Note that the back up ring must be installed opposite the high pressure side of the o-ring.
- 9. Install end cap (16) into the cylinder tube (29) and push into position described in section A2.
- 10. Install the keeper ring (17) by positioning the large top and bottom segments and then the short segments. If necessary, suggest using a grease or vasoline as an installation aid to hold the segments in place.
- 11. Pull end cap (16) back into position against keeper ring.
- 12. Install the end cap bolts (2) and flat washers (3).
- 13. Apply proper torque to secure end cap assembly.

B. Inspection & Replacement of Piston Seal (12)

- 1. Follow steps 1, 2, 3 & 4 from section A.
- 2. Remove rack bolt (18) or remove cushion spear (35).
- Install the piston (13) into the cylinder (29) and push until the piston is flush against the face of the rack gear (28).
- 4. Screw threaded rod into tapped holes in piston (13).
- 5. Pull piston, piston seal (12), and wear ring (11) free from cylinder (29).
- Inspect and if necessary, replace the piston seal. (Polypak o-ring must face toward the high pressure side.) Replace the wear ring (11) if necessary.
- Inspect and replace rack bolt or cushion spear o-ring seal (19) and back up ring (20). Replace if necessary. Install the back up ring opposite the pressure side.
- Install the rack bolt (18) or the cushion spear (35) and tighten with the appropriate torque value presented in the table.

CAUTION: The nylok slug (21) is used to help the rack bolt or cushion spear resist loosening caused by vibration. Ensure the nylok slug is properly installed into the rack bolt or cushion spear prior to assembly. Replace if necessary.

Follow steps 6 through 13 from section A to install the end cap.

C. Inspection and Replacement of Bearing Cap O-Ring (31) and Pinion O-Ring (33).

- 1. Remove bearing cap bolts (5) and lock washers (6).
- 2. Pull bearing cap (4) from the housing (1).
 - **CAUTION:** Use two bearing cap bolts (5) as "jacking screws" by screwing into the tapped holes in the bearing cap (4). Use wrench to "lift" the bearing cap out of the housing.
- Mark witness marks on the pinion. Remove bearings (32) and pinion (34). Mark witness marks on the pinion (34) and rack gear (28) to ensure correct timing at assembly.
- 4. Inspect and replace pinion o-rings (33) in bearing cap (4) and in housing (1) if necessary.
- Install bearings (32) and pinion (34) in housing. Pay attention to the witness marks so correct timing is achieved.
- Inspect and replace bearing cap o-ring (31) if necessary.
- Install bearing cap (4) and bearing cap bolts (5) with lock washers (6). Fasten bolts to torque values indicated in the table.

Bearing Preload Procedure ''M"Series Rotary Actuators

- After reassembly of actuator, torque bearing cap bolts, item #3, to the value given in the torque table on page 95.
- 2. Loosen bearing cap bolts and retighten to approximately 1/2 of the recommended torque value.
- Using a feeler gauge, measure the gap between the bearing cap and housing created by the loosening of the bolts in step #2.
- Add shims as required per the measurement taken. If shimming can not be obtained to the exact measured amount, get as close as possible without going over the measured thickness required.

Note: shim thickness available: .005", .015"

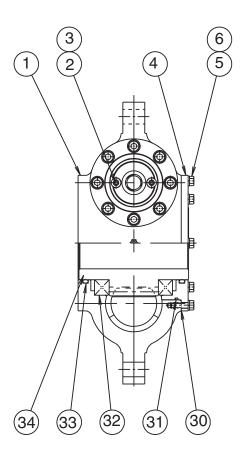
D. Disassembly of Actuator. Procedure for Removal, Inspection and Replacement of Rack Bearing (27).

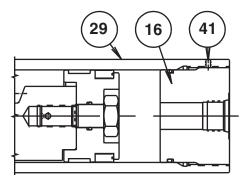
- Follow suggested instructions 1, 2, and 3 from section C to remove bearing cap (4), bearings (32), and pinion (34).
 - **CAUTION**: Mark witness marks on the pinion (34) and rack gear (28) to ensure correct timing at assembly.
- Follow suggested instruction 1, 2, 3, 4, and 5 from section B.

- Remove keeper flange bolts (22) and keeper flange lock washers (23).
- Remove keeper ring (25) by sliding keeper flange (24) along cylinder (29) until keeper ring (25) is exposed.
 Remove both sections of the keeper ring.
- 5. Pull cylinder (29) from housing (1).
- 6. Slide keeper flange (24) from cylinder (29).
- 7. Inspect and replace cylinder o-ring (26) if necessary.
- 8. Slide rack (28) out of the housing.
 - **CAUTION**: Use care not to damage the rack bearing. Ensure the rack gear teeth remain opposite from the rack bearing (27).
- Inspect and replace rack bearing (27) if necessary.
 CAUTION: Ensure the rack bearing remains centered in the housing.
- 10. Install rack gears (28). Ensure the rack gear is slid into place. Suggest using grease or vasoline to hold the rack bearing in place during rack installation. Center the rack gear inside the housing. Use generous amounts of EP2 grease or equivalent to coat and ensure the gear train is properly lubricated during operation.
- Assemble keeper flange (24) and the keeper ring (25) on to the cylinder (29). Install keeper ring (25) in slot of cylinder (29) and the slide keeper flange (24) over keeper ring (25). Slide assembly into the housing.
- 12. Install keeper flange bolts (22) and lock washers (23). Fasten keeper flange bolts (22) to torque values specified in the table.
- 13. Repeat steps 4, 5, 6 and 7 from section C.
- 14. Repeat steps 7, 8 and 9 from section B.
- 15. Ensure housing has a generous amount of lubricant. Install the housing relief valve (10).

Caution:

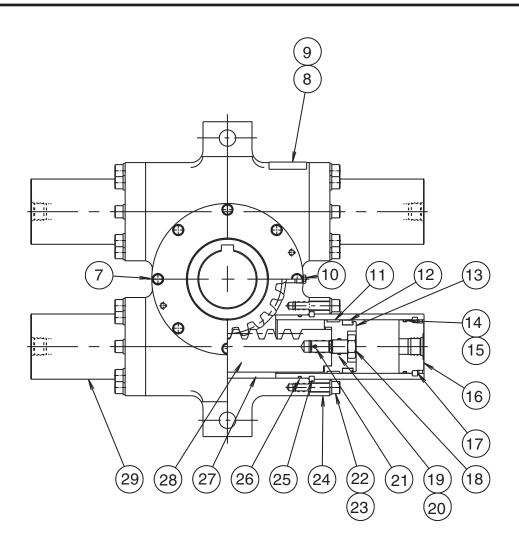
Do not pump housing completely full of grease. Only a generous amount of lubricant is required. This will eliminate the potential of filling the "hon-pressure" side of the cylinder tubes with grease.

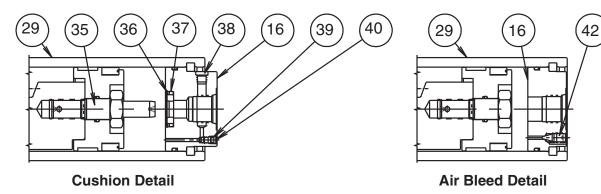

Additional information may be obtained from the PNEUMATIC DIVISION in Wadsworth, Ohio or from the nearest authorized PARKER HANNIFIN Distributor or Representative.



Parts Identification

		QUANTITY					
ITEM	DESCRIPTION	SINGLE	DOUBLE				
1	Housing	1	1				
2	Bolt, End Cap	4	8				
3	Flat Washer, End Cap	4	8				
4	Bearing Cap	1	1				
5	Bolt, Bearing Cap	8	8				
6	Lockwasher, Bearing Cap	8	8				
7	Plug, Housing	1	1				
8	Name Plate, Housing	1	1				
9	Drive Screw, Name Plate	4	4				
10	Relief Value, Housing	1	1				
11*	Wear Ring, Piston	2	4				
12*	Piston Seal	2	4				
13	Piston	2	4				
14*	O-Ring, End Cap	2	4				
15*	Back-up ring, End Cap	2	4				
16	End Cap	2	4				
17	Keeper Ring, End Cap	2	4				
18	Rack Bolt	2	4				
19*	O-Ring, Rack Bolt	2	4				
20*	Back-up Ring, Rack Bolt	2	4				
21	Nylon Slug, Rack Bolt	2	4				
22	Bolt, Keeper Flange	16	32				
23	Lockwasher, Keeper Flange	16	32				
24	Keeper Flange	2	4				
25	Keeper Rings	2	4				
26*	O-Ring, Cylinder	2	4				
27	Rack Bearing, Housing	1	2				
28	Rack	1	2				
29	Cylinder	2	4				
30‡	Shim	2	2				
31*	O-Ring, Bearing Cap	1	1				
32	Bearing	2	2				
33*	O-Ring, Pinion	2	2				
34	Pinion	1	1				
35+	Cushion Plug	1	1				
36+	Retainer Ring	1	1				
37+	Cushion Bushing	1	1				
38+	Plug, End Cap	1	1				
39+*	O-Ring, Adjust Screw	1	1				
40+	Cushion Adjusting Screw	1	1				
41	Set Screw	2	4				
42**	Air Bleeder	2	4				


- * Item Included in Seal Kit
- ** If Unit is Equipped With "G" Option (Air Bleeds)
- For Cushion in One Direction, Qty. 1
 For Cushion in Both Directions, Qty. 2
 On Double Rack for Cushion in Both Directions, Qty. 4
- ‡ Total Shims = 2 (1 of each, or as required)
 - 1 Shim = 0.005" Thick
 - 1 Shim = 0.015" Thick



5° Stroke Adjust Option Caution: Do not adjust out past flush position

Torque Table (LB-FT)

Model No.	Rack Bolt #24 Cush. Plug #35	Bearing Cap Bolt #3	Keeper Flange Bolt #33				
15/30M	35	5	10				
75/150M	35	18	45				
300/600M	110	45	80				
1000M	200	90	90				

Tork-Mor Standard Series Actuators

Maintenance Instructions & Parts List

Provide Model Number and Serial Number When Ordering Spare Parts.

The vane and stator should NEVER be used for a positive stop. See below Section #1 STOPS.

Tork-Mor Series actuators have been carefully designed to provide long, trouble-free life given that the unit has been correctly installed and operated within specifications.

The following lists factors relevant to service life and should be read before actuator installation.

1. STOPS

The vane and stator should never be used as a positive stop. For light to medium loads a taper lock stop (TLS) option is available. Alternately, external stops mounted securely to machine framework are recommended. For high inertia or high speed loads, externally mounted valving should be used to minimize system shocks.

2. SURGE PRESSURES

Surge or shock pressure in excess of the actuator rated pressure are detrimental to unit life and must be avoided. Crossover relief valves mounted adjacent to the actuator can help reduce these abnormal pressure peaks.

3. ANGULAR VELOCITY

Angular velocity can be controlled by metering the flow into or out of the actuator ports. This is best accomplished by the use of flow control valves. The actuators are fitted with standard port sizes to provide optimum operating speeds with reasonable pressure drops.

4. DRAINS

The actuators are fitted with drain ports to minimize external leakage possibilities. These drain ports should be connected directly back to the oil reservoir with a minimum of back pressure.

5. THRUST LOADS

External thrust bearings are required for actuators subjected to axial or thrust loads. These bearings are also recommended where large actuators are mounted in the vertical plane since for all practical purposes the shaft assembly is floating on the seals and can lead to accelerated seal wear.

Tork-Mor Series actuators are fitted with ball or roller bearings to support the shaft assembly, but they should not be subjected to external loads. External bearings should be used to support overhung or radial loads.

Supplementary Data

FLUID MEDIUM

For hydraulic usage a clean, filtered, mineral based oil with 150 to 400 SUS viscosity at 100°F is recommended for use with standard Buna seals. The correct filters can be provided by your Parker Distributor.

Air service units, including filter, regulator and lubricator will ensure correctly conditioned compressed air is available for pneumatically operated systems.

VANE POSITION

The vane is always positioned on the centerline of the keys with an "0" marking on the shaft end in line with a single vane.

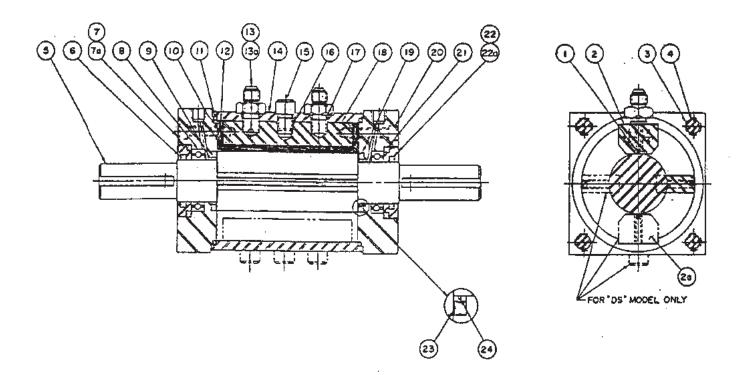
ACTUATOR SIZE

Selection of the correct actuator is achieved by determining the available system pressure then selecting a unit with 20% to 50% reserve capacity of the application load requirements.

SEALS

Standard seal compound is nitrile for mineral based hydraulic fluid. Other seal materials can be provided for most operating fluids. To ensure correct seal compound please provide name and type of operating fluid.

SHAFT COUPLINGS


Couplings should engage the full length of shaft keyway and should only be pressed on after support has been provided on the opposite end of the shaft.

6. RADIAL LOADS

1800 maint.pmd, M&A

Parts Identification

Item No.	Description	S33	DS33	S42	DS42	S44	DS44	S46	DS46	S74	DS74	S77	DS77	S105	DS105	S108	DS108	S112	DS112
• 1	PTFE Backup	4	8	4	8	4	8	4	8	4	8	4	8	4	8	4	8	4	8
2	Stator, Standard	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2a	Stator, Dummy	_	1	_	1	_	1	_	1	_	1	_	1	_	1	_	1	_	1
3	Allen Nut	_	_	_	_	4	4	4	4	4	4	4	4	4	4	4	4	4	4
4	Tie Rod	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
5	Shaft Assembly	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
• 6	Seal, Retainer Nut Inner	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1
7	Head, Threaded	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7a	Head, C'bored	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	Bearing	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	Thrust Bearing	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
• 10	Seal, Stator	4	4	4	4	4	4	4	4	4	4	4	4	4	10	5	12	7	14
• 11	Seal, Head	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
• 12	"U" Seal	2	4	2	4	2	4	2	4	2	4	2	4	2	4	2	4	4	4
13	Male Connector	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
13a	Female Conector						,		Se	e Note	2			•			•		
14	Body	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15	Bolt, Stator	1	2	_	2	1	4	3	6	_	2	1	4	_	2	1	4	3	6
16	Seal, Stator Bolt	1	2	_	2	1	4	3	6	_	2	1	4	_	2	1	4	3	6
17	Seal, Connector	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
18	Gasket	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
• 19	Seal, Shaft	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
20	Socket Head Cap Screw	4	4	4	4	4	4	4	4	4	4	4	4	4	8	4	8	4	8
21	Seal, Retainer Nut Outer	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
22	Retainer Nut, Standard ¹	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1
22a	Retainer Nut, Solid ¹	_	_	_	_	_	_	_	_	1	1	1	1	1	1	1	1	1	1
23	Shaft, PTFE Glass Filled	_	_	_	_	_	_	_	_	2	2	2	2	2	2	2	2	2	2
24	Seal Thrust Bearing	_	_	l —		_	_	_		2	2	2	2	2	2	2	2	2	2

- Recommended spare parts (seals)
- 1 On single end shaft units, (1) of Item #22 and (1) of Item #22a.
 2 On units with female connector, quantity for Item #13a is (2).

GENERAL

Tork-Mor Actuators, if properly installed, will give many thousand cycles of uninteruupted service. In due time the seals should be replaced and, if correctly installed, new actuator performance will be obtained. We recommend that Tork-Mor Actuators be returned to the factory for repairs. The cost is low and one-day service is our policy. Our trained personnel will see to it that "new actuator" performance is obtained.

In the event that field maintenance is required, the following steps outlined should be followed.

A. DISASSEMBLY AND INSPECTION OF ACTUATOR

- 1. Remove Bearing Retainer Nuts (#22) from Heads (#7).
- 2. Remove Tie Rods (#4) from Heads (#7).
- 3. Remove Socket Head Screws (#20) from Heads (#7).
- 4. Remove Heads (#7) from Body (#14).
- 5. Remove Shaft (#5) from Body (#14).
- 6. Remove Ball Bearings (#8) from Heads (#7).
- Remove Stator Bolts (#15) from Body (#14) and Connector Fittings (#13). On OS models also remove Stator Bolts (#15) from bottom of unit.
- 8. Remove all seals and clean all parts.

B. REPLACEMENT OF SEALS AND RE-ASSEMLYOFACTUATOR

It is recommended that a suitable oil or O-ring lube be used on all seals and mating parts to facilitate assembly.

- Install U-Seal (#12) and PTFE Back-Ups (#1) in Stator(s) (#2).
- Replace Stator(s) (#2) with Gasket (#18) and Stator Bolt Seal(s) (#16) into Body (#14).
- Replace Stator Bolt (#15) and Connectors (#13) with Seals (#17) but DO NOT tighten. (Stator bolts are not used on S-4-2 models.)

- 4. Install Head Seals (#11) Shaft Seals (#19) and Stator Seals (#10) in Heads (#7). On S-7, S-10, DS-7 and DS-10 series models, install Shaft PTFE (#23) on top of Shaft Seals (#19). On S-7 and S-10 series models, also install Thrust Bearing Seals (#24).
- Place Body (#14) onto one Head (#17). Press lightly until body snaps into place. On DS models, install heads after shaft assembly is in place.
- Replace Socket Head Screws (#20) in Head (#7) but DO NOT tighten.
- 7. Install U-Seal (#12) and PTFE Back-Ups (#1) into Shaft (#5).
- 8. Replace Shaft (#5) in Body (#14) and Head (#7). Vane should be located opposite Stator (#2).
- Replace other Head (#7) into Body (#14). Press lightly until head snaps into place.
- Replace Socket Head Screws (#20) in Head (#7) but DO NOT tighten.
- 11. Replace Tie Rods (#4) and tighten evenly.
- 12. Tighten Stator Bolt(s) (#15) and Socket Head Screws (#20).
- 13. Replace Bearings (#8) into Heads (#7). At this point the actuator may be pressurized to check Head Seals (#11) and Shaft Seals (#19) for leakage.
- 14. Install Outer Seals (#6) into Retaining Nuts (#22).
- 15. Install Inner Seals (#6) into Retaining Nuts (#22).
- 16. Screw Retainer Nuts (#22), into Heads (#7).

Additional information may be obtained from Pneumatic Division, Wadsworth, Ohio or from the nearest Pneumatic Division Representative.

Tightening Torques

MODEL SIZE	TIE ROD BOLT (#4)
33	13 ft. lbs.
42	25 ft. lbs.
44	25 ft. lbs.
46	25 ft. lbs.
74	130 ft. lbs.
77	130 ft. lbs.
105	500 ft. lbs.
108	500 ft. lbs.
1012	500 ft. lbs.

