Contents

In-Line Mounted Va	Ives		Page
Flow Control Valves	-		
	Flow Controls		
	Flow Controls (Metric Port	•	
	Pressure Compensated FIPressure Compensated FI		
	Needle Valves	•	
	Needle Valves (Metric Port		
	Needle valves (Methic Port	•	
	Metering Valves (Metric Po		
	Flow Control Valves	·	
Check Valves	Flow Control valves		24 - 23
		it. Fue	20 20
	Hydraulic Adjustable Veloc		
	Fried Velocity Fuse	•	
	Check Valves		
	Check Valves (Metric Ports		
	Check valves (wether Forts		
	Check Valves		
	Check Valves		
Pressure Control Valves	Crieck valves		45 - 46
			47 40
Accessories			47 - 49
	Pressure Snubbers		50
	Gage Isolator Valves		
	Refer to Bulletin HY14-1410/US		
	Refer to bulletin H f 14-1410/03		52
	2-Way, 414 Bar (6000 PSI)		
	2-Way, 414 Bar (6000 PSI)		
	2-Way, 414 Bar (6000 F SI)		
	2-Way, 138 Bar (2000 PSI)		
	3-Way, 207 Bar (3000 PSI)		
	3 and 4-Way, 414 Bar (6000 PSI)		
	2 and 3-Way, 414 Bar (6000 PSI)		
Low Pressure Ball Valves			
			99
	2-Way, 41 Bar (600 PSI)		
	2-Way, 41 Bar (600 PSI)		
	2-Way, 41 Bar (000 F3I)		
	2-Way, 138 Bar (2000 PSI)		
	2-way, 136 Bar (2000 F 31)		
	2-vvay, 17 Bai (2001 01)		
3300-intro.p65, dd			

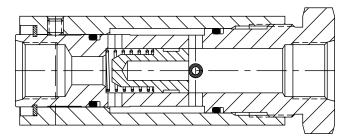
General Description

Series AVF (Hydraulic) adjustable velocity fuses are designed to provide automatic hydraulic line rupture shut-off, as well as the ability to isolate a problem circuit on parallel circuit applications. Use of the fuses limits oil spillage and potential component damage. The fuses feature an adjustable flow for easy set-up and operation. A set screw in the body is provided to "lock in" the selected flow.

Features

- Provides automatic line rupture shut-off.
- Isolates problem circuit on parallel circuit applications.
- Limits oil spillage and potential component damage.
- Adjustable closing flow simple readjustment.

Specifications


Service Application	Hydraulic		
Maximum Operating Pressure	340 Bar (5000 PSI)		
Material	Body, Sleeve, Poppet, Roll Pin	Steel	
	Spring	Stainless Steel	
	O-ring	Fluorocarbon	
	Back-up Ring	PTFE	
	Finish	Zinc Plated	
Operating Temperature	-27°C to +177°C (-20°F to +350°F)		
Mounting	Any		

Ordering Information

Nominal	Port Type				
Size	NPT P/N	SAE P/N			
1/4"	AVF-1/4-S28	AVF-106-S28			
3/8"	AVF-3/8-S28	AVF-108-S28			
1/2"	AVF-1/2-S28	AVF-110-S28			
3/4"	AVF-3/4-S28	AVF-112-S28			
1"	AVF-1-S28	AVF-116-S28			
1-1/2"	AVF-1 1/2-S28	AVF-124-S28			

Construction View

Performance Data

Valve	Closing Flow Adjustment Range				
Size	Minimum	Maximum			
1/4"	1.9 LPM (1/2 GPM)	15 LPM (4 GPM)			
3/8"	3.8 LPM (1 GPM)	30 LPM (8 GPM)			
1/2"	5.7 LPM (1-1/2 GPM)	45 LPM (12 GPM)			
3/4"	7.6 LPM (2 GPM)	68 LPM (18 GPM)			
1"	11 LPM (3 GPM)	102 LPM (27 GPM)			
1-1/2"	23 LPM (6 GPM)	227 LPM (60 GPM)			

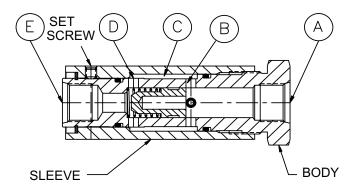
Pressure drop at maximum rated flow is less than 100 PSID on all sizes.

Series AVF – Hydraulic

Operation

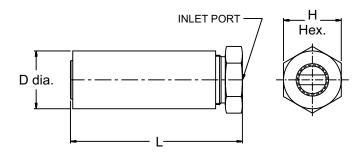
Series AVF adjustable velocity fuse is a normally open, in-line valve. Under normal conditions, a spring holds the fuse poppet off its seat.

Flow Path


Flow enters the fuse at the flanged inlet port (A). Before reaching the poppet, a series of radial holes (B) in the body directs flow from the body core into an annular cavity (C) between the body and the adjusting sleeve. Flow is directed axially between the body and sleeve until it reaches another series of radial holes (D) at the poppet seat. Flow is then directed back into the body core through the seat and out the fuse outlet port (E).

Making Adjustments

External adjustments of the sleeve reduce the "free" area of the radial holes (D). This reduction in area creates an increase in flow velocity, resulting in a higher pressure drop. When the pressure drop exceeds the spring force holding the poppet open, the inlet pressure will force the poppet against its seat, effectively closing the fuse.


Line Rupture Shut-Off

The sleeve can be adjusted such that, at normal flows, the fuse will remain open but increased flow rates (such as caused by downstream line rupture) will result in a rapid closing of the fuse. The fuse will remain closed until the inlet pressure is eliminated or the downstream pressure is equalized with the inlet.

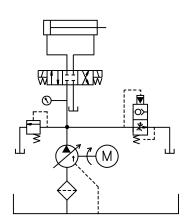
Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

Nominal Size	L mm - (in)	D mm - (in)	H mm - (in)	Weight kg - (lbs.)
1/4"	90 (3.56)	29 (1.13)	29 (1.13)	0.36 (0.8)
3/8"	108 (4.25)	33 (1.31)	33 (1.31)	0.54 (1.2)
1/2"	128 (5.02)	43 (1.69)	43 (1.69)	1.1 (2.4)
3/4"	143 (5.62)	51 (2.0)	51 (2.0)	1.7 (3.8)
1"	168 (6.62)	61 (2.38)	61 (2.38)	2.8 (6.1)
1-1/2"	221 (8.69)	76 (3.0)	76 (3.0)	5.3 (11.6)

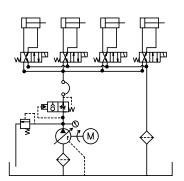
Applications

Conventional Fuse

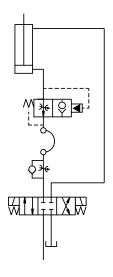

- Closing flow must be calculated
- Calculation error results in unusable valve
- System changes make valve unusable
- "Matched" fuses are very expensive
- Special order to meet requirements

AVF Series Adjustable Velocity Fuse

- No calculations required
- Correct size always supplied
- Simple re-adjustment
- Minor adjustment only
- Stocked by pipe size


Pump/System Air Bleed

When starting a pump under load, the blocked port resists flow, and more torque is required from the prime mover. This condition may cause an electric motor to draw higher "pull-up current," or may cause a combustion engine powered pump to stall. The velocity fuse is normally open and when tied into the tank, it will provide an open, load free path to tank when the pump first starts. As the pump nears operating speed, the resulting flow will cause the fuse to close, directing all flow into the primary circuit.


Main Pressure Line from Pump to Manifold

A line rupture in a central power unit would allow fluid to be pumped out through the broken line. The loss of oil can be expensive to clean up, dispose of, and replace; plus it must be done in accordance with EPA regulations. Ruptured lines may cause physical damage or the release of oil into a flammable area. A velocity fuse closes down flow when failure of a line occurs and eliminates these problems.

Cylinder/Actuator Shut-Off

A line rupture that occurs when a cylinder is supporting a load allows the load to fall unrestricted. A velocity fuse installed at the cylinder port will shut off flow and prevent the load from falling in the event of a hose or tubing failure.

General Description

Series AVF (Pneumatic) adjustable velocity fuses are designed to provide automatic air line shut-off if a line should rupture or break. The use of fuses limits the possibility of personal injury or damage to equipment from whipping hoses. The fuses are field adjustable for easy setup and operation. A set screw in the body allows the selected setting to be locked.

Features

- Provides automatic line rupture shut-off.
- Limits runaway conditions.
- Eliminates hose whip.
- Air or water compatible.

Benefits

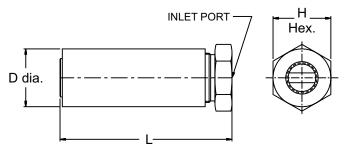
- Eliminates "line whip." No injury or damage possible.
- Limits runaway conditions. Load will stay in place after break.
- Precise sizing not required. Each valve has an adjustable flow range.
- Simple readjustments. Turn barrel to reset.
- Setting may be locked.
- Four sizes available.
- Resets quickly after line repair. Pressurize downstream line.

Specifications

Service Application	Pneumatic		
Maximum Operating Pressure	136 Bar (2000 PSI)		
Material	Body, Sleeve,	Brass	
	Poppet, Roll Pin Spring Stainless Steel		
	O-ring Nitrile		
	Back-up Ring PTFE		
Operating Temperature	-27°C to +177°C (-20°F to +350°F)		
Mounting	Any		
Sizes	1/4", 3/8", 1/2" and 3/4" NPT		

Ordering Information

Series AVF Air Service				
Valve Size	Part Number			
1/4" NPT	AVF-1/4-B2			
3/8" NPT	AVF-3/8-B2			
1/2" NPT	AVF-1/2-B2			
3/4" NPT	AVF-3/4-B2			



Performance Data

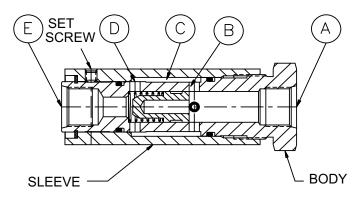
Valve	Series AVF Air Service Closing Flow Adjustment Range				
Size	Minimum	Maximum			
1/4" NPT	5 SCFM	30 SCFM			
3/8" NPT	5 SCFM	45 SCFM			
1/2" NPT	10 SCFM	60 SCFM			
3/4" NPT	10 SCFM	60 SCFM			

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

Nom. Size		L nm :hes)	-	D nm ches)	_	H nm ches)	Weight kg (lbs.)
1/4"	90	(3.56)	29	(1.13)	29	(1.13)	0.36 (0.80)
3/8"	108	(4.25)	33	(1.31)	33	(1.31)	0.54 (1.20)
1/2"	128	(5.02)	43	(1.69)	43	(1.69)	1.10 (2.40)
3/4"	143	(5.62)	51	(2.00)	51	(2.00)	1.70 (3.80)

Operation

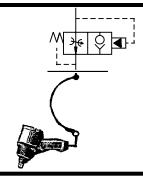

The AVF Series adjustable velocity fuse is a normally open, in-line valve. Under normal conditions, a spring holds the fuse poppet off its seat.

Flow Path

Flow enters the fuse at the flanged inlet port (A). Before reaching the poppet, a series of radial holes (B) in the body directs flow from the body core into an annular cavity (C) between the body and the adjusting sleeve. Flow is directed axially between the body and sleeve until it reaches another series of radial holes (D) at the poppet seat. Flow is then directed back into the body core through the seat and out the fuse outlet port (E).

Making Adjustments

External adjustments of the sleeve reduce the "free" area of the radial holes (D). This reduction in area creates an increase in flow velocity, resulting in a higher pressure drop. When the pressure drop exceeds the spring force holding the poppet open, the inlet pressure will force the poppet against its seat, effectively closing the fuse.


Line Rupture Shut-Off

The sleeve can be adjusted such that, at normal flows, the fuse will remain open but increased flow rates (such as caused by downstream line rupture) will result in a rapid closing of the fuse. The fuse will remain closed until the inlet pressure is eliminated or the downstream pressure is equalized with the inlet.

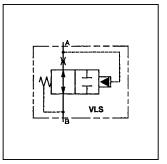
Applications

Air Line Drop

A broken air hose may cause a violent whipping action that could cause injury to employees or damage to equipment. A velocity fuse will provide an automatic shut-off of air in case of a broken hose and eliminate this problem.

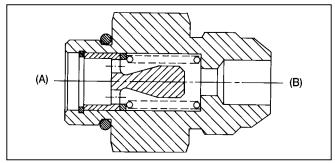
Cylinder / Actuator Shut-Off

A line rupture that occurs when a cylinder is supporting a load allows the load to fall unrestricted. A velocity fuse installed at the cylinder port will shut off flow and prevent the load from falling in the event of a hose or tube failure.



General Description

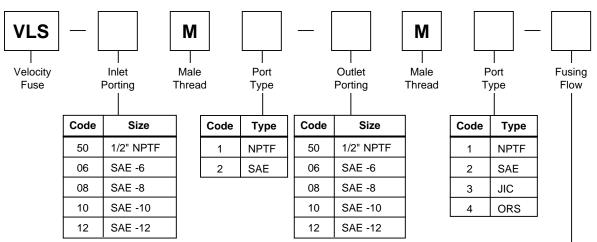
Series VLS velocity check valves protect your hydraulic system in the event of line rupture. These valves return to the open position once the pressure is equalized.


Series VLS valve is a flow sensing, hydraulic check. Flow will pass through the check until the designated closing flow is reached. Then the check will close, stopping further flow.

Features

Up to 207 Bar (3,000 PSI),
 0.01 to 23.8 LPM (0.5 to 90 GPM)

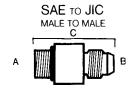
Specifications


Maximum Operating Pressure	207 Bar (3000 PSI)	Operating Temperature	Under normal conditions of continuous operation, fluid temperature should not exceed -82°C (180° F). In no instance	
Normal Closing Flow	To be based on a nominal 3.5 Bar (50 PSI) with 150 SUS oil		should the temperature exceed 93°C (200°F).	
Leakage After Closing	10 DPM maximum	Torque Required for Installation	See chart	
Reverse Flow	1,000		All steel	
Fluid Recommended	Premium grade hydraulic fluid with viscosity of 10cSt (60 SUS) to	um grade hydraulic fluid with sity of 10cSt (60 SUS) to		
	216 cSt (1000 SUS) at operating temperature.	Mounting	Not restricted	

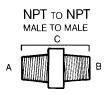
31

Ordering Information

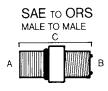
Check Valves Series VLS


VLS Flow Chart				
Max Flow	Models			
26.5 LPM (7 GPM)	06M2-06M3			
37.9 LPM (10 GPM)	08M2-08M3 10M2-08M4			
45.4 LPM (12 GPM)	10M2-10M3			
56.8 LPM (15 GPM)	50M1-50M1			
90.8 LPM (24 GPM)	12M2-12M3			

Code		FI	ow*	
0.8	3.0	LPM	8.0)	GPM)
1.5	5.7	LPM	(1.5	GPM)
2.0	7.6	LPM	(2.0	GPM)
3.0	11.	4 LPM	(3.0	GPM)
6.0	22.	7 LPM	(6.0	GPM)
7.0	26.	5 LPM	(7.0	GPM)
10	37.	9 LPM	(10	GPM)
22	83.	3 LPM	(22	GPM)


Check Valves Series VLS

Dimensions


Inch equivalents for millimeter dimensions are shown in (**)

A	В	(:	H	ех			ed Installation (In Lb. Ft.)
(ln.)	(ln.)	(ln.)	(mm)	(In.)	(mm)	Part Number	In Aluminum	In Steel
3/8	3/8	1.30	(33.0)	11/16	(17.5)	VLS-06M2-06M3-**	85-100	13-16
1/2	1/2	2.25	(57.2)	7/8	(22.2)	VLS-08M2-08M3-**	15-20	25-33
5/8	5/8	2.06	(52.3)	1	(25.4)	VLS-10M2-10M3-**	25-30	42-50
3/4	3/4	1.97	(50.0)	1 1/4	(31.8)	VLS-12M2-12M3-**	35-40	55-65

A	В		С	Н	ex			ed Installation (In Lb. Ft.)
(ln.)	(In.)	(In.)	(mm)	(ln.)	(mm)	Part Number	In Aluminum	In Steel
1/2	1/2	1.90	(48.4)	7/8	(22.2)	VLS-50M1-50M1-**	55-60	85-90

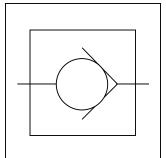
A (In.)	B (In.)	(In.)	C (mm)	H (In.)	ex (mm)	Part Number		ed Installation (In Lb. Ft.)
3/8	3/8	1.25	(31.8)	3/4	(19.1)	VLS-06M2-06M4-**	85-100	13-16
5/8	1/2	2.10	(53.3)	1	(25.4)	VLS-10M2-08M4-**	25-30	42-50

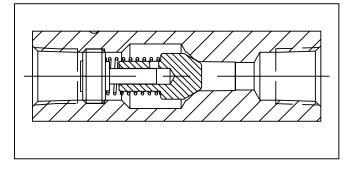
General Description

Series C check valves permit free flow in one direction, and dependable shut-off in the reverse direction.

Operation

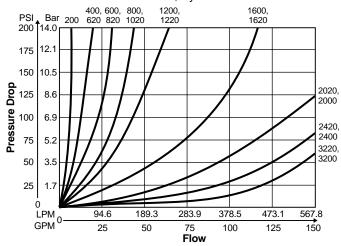
When pressure going through the valve is increased to the cracking level, the valve opens. When the pressure is reduced to below the cracking level, the valve closes.


Features


- Stainless steel poppets standard.
- Soft seal poppets are available.
- Triangular retainers guide the poppets, and hold the spring firmly in place even under high velocity and shock.

Specifications

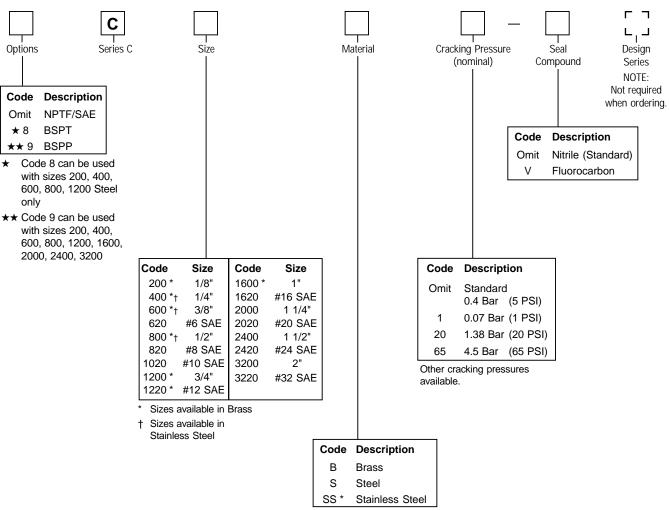
Maximum Operating Pressure	Brass:	140 Bar (2000 PSI); except for C1600 brass which is 35 Bar (500 PSI)		
	Steel & Stainless Steel:	345 Bar (5000 PSI) for 200 thru 1220; 207 Bar (3000 PSI) for all other sizes and styles		
Material	Body	see ordering code		
	Spring	316 Stainless Steel		
	Poppet	416 Stainless Steel		
	Retainer	416 Stainless Steel		
	Stainless Steel Bodies	303 Stainless Steel		
Poppets		oppet is standard for n 800/1020 size.		
		g pressures > 15 PSI, poppets are standard		
Nominal Cracking Pressure	0.4 Bar (5 PSI) standard 0.07 Bar (1 PSI), 1.38 Bar (20 PSI), 4.48 Bar (65 PSI) optional			
Operating Temperature	-40°C to +121°C (-40°F to +250°F) Nitrile (standard)			
	-26°C to +2 (-15°F to +4	05°C 400°F) Fluorocarbon		



Performance Curves

34

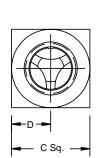
Controlled Flow vs. Pressure Drop

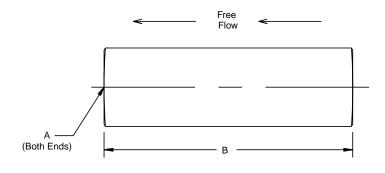

Free Flow 0.3 Bar (5 PSI) Cracking 100 SSU, Hydraulic Oil

Check Valves Series C

Ordering Information

Series C Brass Valves can be used for both air and oil service.


* Available in 400, 600 and 800 sizes.


		Effective	
		Orifice Area	Effective
Model	Max Flow	Control Flow	Control Flow
Number	LPM (GPM)	in.²	\mathbf{C}_{v}
C200	15 (3)	0.023	0.53
C400	23 (5)	0.068	1.56
C620	23 (5)	0.068	1.56
C600	30 (8)	0.099	2.27
C820	30 (8)	0.099	2.27
C800	45 (15)	0.224	5.11
C1020	45 (15)	0.224	5.11
C1200	100 (25)	0.348	7.95
C1220	100 (25)	0.348	7.95
C1600	150 (40)	0.453	10.35
C1620	150 (40)	0.453	10.35
C2000	284 (70)	0.855	19.52
C2020	284 (70)	0.855	19.52
C2400	378 (100)	0.955	21.82
C2420	378 (100)	0.955	21.82
C3200	605 (150)	1.046	23.90
C3220	605 (150)	1.046	23.90

Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

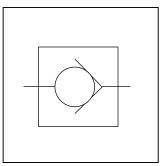
Model Number	Weight kg (lbs.)	A	В	С	D
C200	0.0 (0.1)	1/8–27 NPTF	50.8 (2.00)	16.0 (0.63)	7.9. (0.31)
C400	0.2 (0.4)	1/4–18 NPTF	66.8 (2.63)	20.6 (0.81)	10.4 (0.41)
C420	0.0 (0.1)	7/16–20 UNF #4 SAE	68.3 (2.69)	20.6 (0.81)	10.4 (0.41)
C600	0.2 (0.5)	3/8–18 NPTF	69.9 (2.75)	25.4 (1.00)	12.7 (0.50)
C620	0.2 (0.5)	9/16–18 UNF #6 SAE	79.2 (3.12)	25.4 (1.00)	12.7 (0.50)
C800	0.6 (1.3)	1/2–14 NPTF	87.4 (3.44)	31.8 (1.25)	16.0 (0.63)
C820	0.3 (0.7)	3/4-16 UNF #8 SAE	88.9 (3.50)	28.4 (1.12)	14.2 (0.56)
C1020	0.6 (1.3)	7/8-14 UNF #10 SAE	101.6 (4.00)	31.8 (1.25)	15.7 (0.62)
C1200	0.9 (2.0)	3/4–14 NPTF	98.6 (3.88)	38.1 (1.50)	19.1 (0.75)
C1220	0.9 (2.0)	1 1/6–12 UN #12 SAE	117.3 (4.62)	38.1 (1.50)	19.1 (0.75)
C1600	1.5 (3.3)	1–11 1/2 NPTF	127.0 (5.00)	44.5 (1.75)	22.4 (0.88)
C1620	1.5 (3.3)	1 5/16–12 UN #16 SAE	142.7 (5.62)	57.2 (2.25)	28.4 (1.12)
C2000	2.8 (6.2)	1 1/4–11 1/2 NPTF	143.0 (5.63)	57.2 (2.25)	28.7 (1.13)
C2020	2.8 (6.2)	1 5/8–12 UN #20 SAE	165.1 (6.50)	69.9 (2.75)	35.1 (1.38)
C2400	3.8 (8.4)	1 1/2–11 1/2 NPTF	143.0 (5.63)	69.9 (2.75)	35.1 (1.38)
C2420	3.8 (8.4)	1 7/8–12 UN #24 SAE	184.2 (7.25)	76.2 (3.00)	38.1 (1.50)
C3200	7.0 (15.4)	2–11 1/2 NPTF	165.1 (6.50)	88.9 (3.50)	44.5 (1.75)
C3220	7.0 (15.4)	2 1/2–12 UN #32 SAE	228.6 (9.00)	101.6 (4.00)	50.8 (2.00)

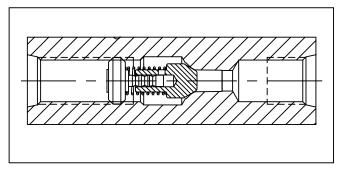
General Description

Series 6C check valves provide free flow in one direction and dependable shut-off in the reverse direction.

Operation

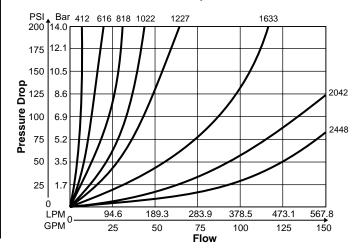
When pressure going through the valve is increased to the cracking level, the valve opens. When the pressure is reduced to below the cracking level, the valve closes.

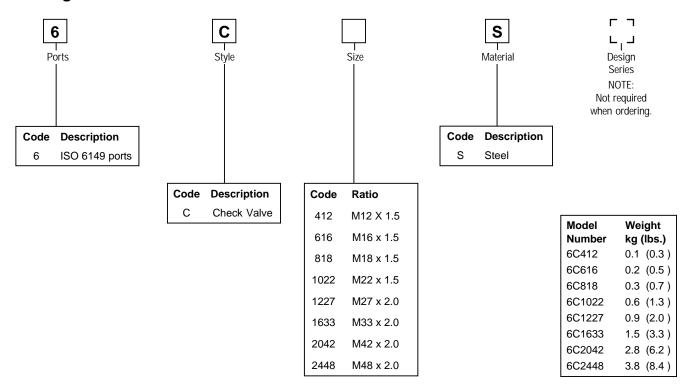

Features


- Meets ISO 6149 standards.
- Hard metric dimensions.
- Reliable leak-free performance straight thread port with o-ring sealing.
- Global interchangeablility.

Specifications

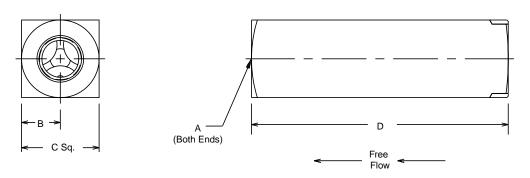
Maximum Operating Pressure	345 Bar (5000 PSI)
Maximum Flow	M12 x 1.5 11 LPM (3 GPM) M16 x 1.5 19 LPM (5 GPM) M18 x 1.5 30 LPM (8 GPM) M22 x 1.5 57 LPM (15 GPM) M27 x 2.0 95 LPM (25 GPM) M33 x 2.0 151 LPM (40 GPM) M42 x 2.0 265 LPM (70 GPM) M48 x 2.0 379 LPM (100 GPM)
Cracking Pressure	Standard: 0.3 Bar (5 PSI) Optional: 0.1 Bar (1 PSI) 4.5 Bar (65 PSI)
Material	Body ASTM 12L14 Carbon Steel Poppet ASTM 416 Stainless Steel Retainer ASTM 416 Stainless Steel Spring ASTM 316 Stainless Steel
Seals	Standard: Nitrile Optional: Fluorocarbon




Performance Curves

Controlled Flow vs. Pressure Drop

Free Flow 0.3 Bar (5 PSI) Cracking 100 SSU, Hydraulic Oil



Ordering Information

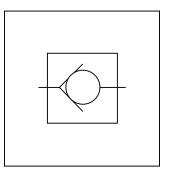
Dimensions

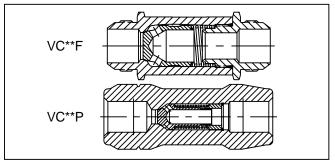
Inch equivalents for millimeter dimensions are shown in (**)

Model Number	Weight kg (lbs.)	A	В	С	D
6C412	0.1 (0.3)	M12 x 1.5	10.4 (0.41)	20.6 (0.81)	68.3 (2.69)
6C616	0.2 (0.5)	M16 x 1.5	12.7 (0.50)	25.4 (1.00)	79.2 (3.12)
6C818	0.3 (0.7)	M18 x 1.5	14.2 (0.56)	28.4 (1.12)	88.9 (3.50)
6C1022	0.6 (1.3)	M22 x 1.5	15.7 (0.62)	31.8 (1.25)	101.6 (4.00)
6C1227	0.9 (2.0)	M27 x 2.0	19.1 (0.75)	38.1 (1.50)	117.3 (4.62)
6C1633	1.5 (3.3)	M33 x 2.0	22.4 (0.88)	44.5 (1.75)	127.0 (5.00)
6C2042	2.8 (6.2)	M42 x 2.0	28.7 (1.13)	57.2 (2.25)	132.8 (5.23)
6C2448	3.8 (8.4)	M48 x 2.0	35.1 (1.38)	69.9 (2.75)	143.0 (5.63)

General Description

Series VCL check valves operate at free flow in one direction. Reverse flow is blocked.


Operation


The spring keeps the poppet closed until the valve reaches the preset pressure. The valve stays open until the pressure goes below the spring setting.

Features

- Available in a wide variety of crack pressures.
- Poppet spring is isolated from liquid flow stream minimizing turbulence.
- Close tolerance fit between poppet and poppet retainer creates a cushion that protects valve from surge shock damage.

Specifications

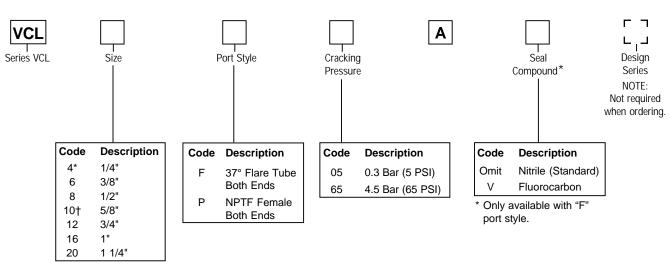
Models VCL*P (female pipe to female pipe)

Valve Model	Max. Oper. Press. Bar (PSI)	Material	Rated Flow LPM (GPM)	Cracking Press. △P Bar (PSI)	Total ∆P Bar (PSI)	Port Size
VCL4P5	207 (3000)	Steel†	23 (5)	0.3 (5)	0.6 (8.3)	1/4 NPSF
VCL4P65	207 (3000)	Steel†	23 (5)	4.5 (65)	5.0 (72.5)	1/4 NPSF
VCL6P5	207 (3000)	Steel†	30 (8)	0.3 (5)	0.4 (6.0)	3/8 NPSF
VCL6P65	207 (3000)	Steel†	30 (8)	4.5 (65)	4.6 (66.0)	3/8 NPSF
VCL8P5	207 (3000)	Steel†	45 (15)	0.3 (5)	0.5 (7.2)	1/2 NPSF
VCL8P65	207 (3000)	Steel†	45 (15)	4.5 (65)	4.6 (66.0)	1/2 NPSF
VCL12P5	207 (3000)	Steel†	100 (25)	0.3 (5)	0.8 (11.0)	3/4 NPSF
VCL12P65	207 (3000)	Steel†	100 (25)	4.5 (65)	4.6 (67.0)	3/4 NPSF
VCL16P5	207 (3000)	Steel†	133 (35)	0.3 (5)	0.4 (5.3)	1 NPSF
VCL16P65	207 (3000)	Steel†	133 (35)	4.5 (65)	4.6 (66.0)	1 NPSF
VCL20P5	207 (3000)	Steel†	189 (50)	0.3 (5)	1.1 (15.9)	1-1/4 NPSF
VCL20P65	207 (3000)	Steel†	189 (50)	4.5 (65)	5.4 (78.0)	1-1/4 NPSF

^{*} Available in "L" or "R" Style.

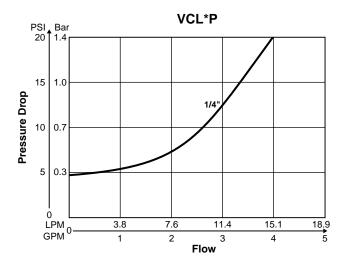
Models VCL*F (male 37° flare to male 37°)

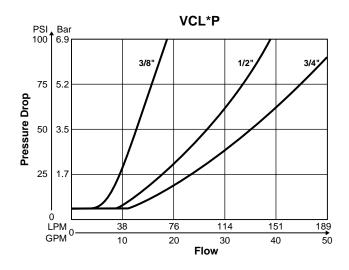
Valve Model	Max. Oper. Press. Bar (PSI)	Material	Seals	Rated Flow LPM (GPM)	Cracking Press. △P Bar (PSI)	Total ∆P Bar (PSI)	Port Size
VCL6F5	207 (3000)	Steel†	Nitrile O-Rings	23 (5)	0.3 (5)	0.6 (8.3)	9/16-18 UNF
VCL6F65	207 (3000)	Steel†	Nitrile O-Rings	23 (5)	4.5 (65)	5.0 (72.5)	(SAE 6)
VCL8F5	207 (3000)	Steel†	Nitrile O-Rings	30 (8)	0.3 (5)	0.4 (6.0)	3/4-16 UNF
VCL8F65	207 (3000)	Steel†	Nitrile O-Rings	30 (8)	4.5 (65)	4.6 (66.0)	(SAE 8)
VCL10F5	207 (3000)	Steel†	Nitrile O-Rings	45 (15)	0.3 (5)	0.5 (7.2)	7/8-14 UNF
VCL10F65	207 (3000)	Steel†	Nitrile O-Rings	45 (15)	4.5 (65)	4.6 (66.0)	(SAE 10)
VCL12F5	207 (3000)	Steel†	Nitrile O-Rings	100 (25)	0.3 (5)	0.8 (11.0)	1 1/16-12 UN
VCL12F65	207 (3000)	Steel†	Nitrile O-Rings	100 (25)	4.5 (65)	4.6 (67.0)	(SAE 12)
VCL16F5	207 (3000)	Steel†	Nitrile O-Rings	133 (35)	0.3 (5)	0.4 (5.3)	1 5/16-12 UN
VCL16F65	207 (3000)	Steel†	Nitrile O-Rings	133 (35)	4.5 (65)	4.6 (66.0)	(SAE 16)
VCL20F5	207 (3000)	Steel†	Nitrile O-Rings	189 (50)	0.3 (5)	1.1 (15.9)	1 5/8-12 UN
VCL20F65	207 (3000)	Steel†	Nitrile O-Rings	189 (50)	4.5 (65)	5.4 (78.0)	(SAE 20)

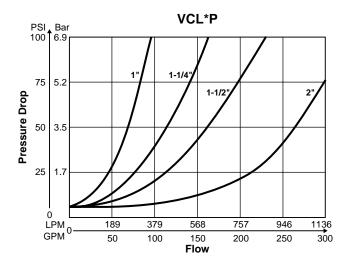

^{*} Available in "L" or "R" Style.

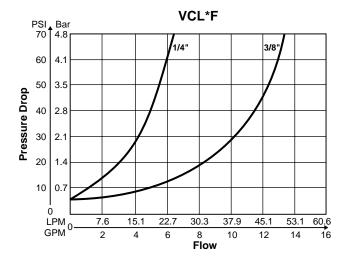
[†] All steel construction with zinc chromate plating. 3300-1.p65, dd

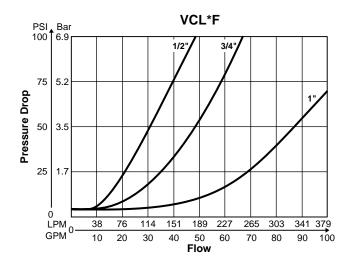
[†] All steel construction with zinc chromate plating.

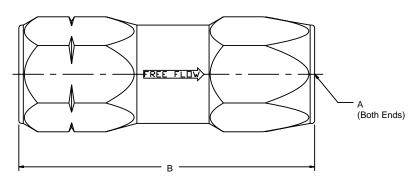

Check Valves Series VCL

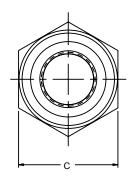



^{* 37°} flare not available in size 4.


[†] NPTF not available in size 10.

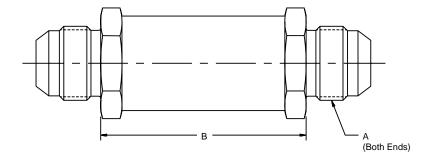

Performance Curves

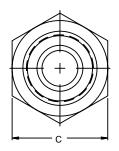




Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

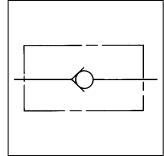

Models VCL*P

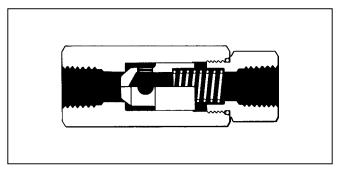


Valve Model	Weight kg (lbs.)	A	В	С
VC*4P**A	0.2 (0.4)	1/4-1/8 NPSF	62.0 (2.44)	20.6 (0.81)
VC*6P**A	0.3 (0.7)	3/8-18 NPSF	69.9 (2.75)	22.4 (0.88)
VC*8P**A	0.4 (0.9)	1/2-14 NPSF	88.9 (3.50)	26.9 (1.06)
VC*12P**A	0.5 (1.2)	3/4-14 NPSF	98.6 (3.88)	34.8 (1.37)
VC*16P**A	0.8 (1.8)	1-11 1/2 NPSF	124.0 (4.88)	40.6 (1.60)
VC*20P**A	2.0 (4.3)	1 1/4-11 1/2 NPSF	125.0 (4.94)	50.8 (2.00)

Models VCL*F

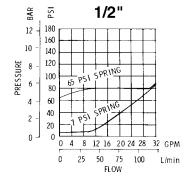
Valve Model	Weight kg (lbs.)	Α	В	С
VC*6F**A	0.2 (0.4)	9/16-18 UNF (SAE 6)	44.5 (1.75)	20.6 (0.81)
VC*8F**A	0.3 (0.7)	3/4-16 UNF (SAE 8)	56.4 (2.22)	25.4 (1.00)
VC*10F**A	0.4 (0.9)	7/8-14 UNF (SAE 10)	61.2 (2.41)	28.4 (1.12)
VC*12F**A	0.5 (1.2)	1 1/16-12 UN (SAE 12)	69.9 (2.75)	35.1 (1.38)
VC*16F**A	0.8 (1.8)	1 15/16-12 UN (SAE 16)	84.1 (3.31)	44.1 (1.62)
VC*20F**A	2.0 (4.3)	1 5/8-12 UN (SAE 20)	84.1 (3.31)	47.8 (1.88)

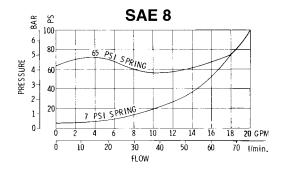

General Description

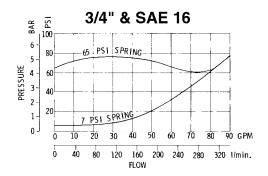

Series CLS in-line check valves are designed to provide free flow in one direction and a positive check in the opposite direction. They are available with a variety of port types and sizes and may be mounted in any position.

Maximum Operating Pressure	207 Bar (3000 PSI)	
Flow Rating	Consult pressure drop data	
Fluid Recommended	Premium grade hydraulic fluid with viscosity of 10cSt (60 SUS) to 216 cSt (1000 SUS) at operating temperature.	
Operating Temperature	Under normal conditions of continuous operation, fluid temperature should not exceed -82°C (180° F). In no instance should the temperature exceed 93°C (200°F).	
Material	All steel	
Mounting	Not restricted	

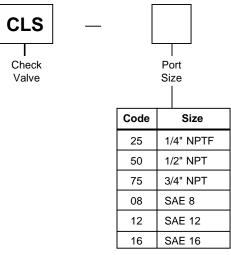


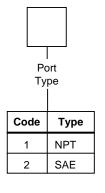


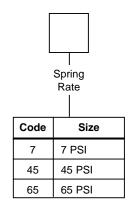

Features

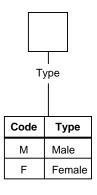

- Up to 3000 PSI (207 Bar)
- 1/4", 1/2", 3/4" NPTF
- #8, #12, #16 SAE

Performance Curves

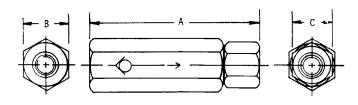


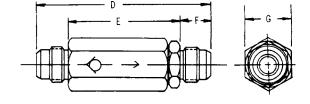





Ordering Information

NOTE: NPT ports not available on Male type valves.




Weight (approx.)

1/4"		.0.50 lbs. [0,23 kg]
1/2"		.1.00 lbs. [0,45 kg]
3/4′′		.2.88 lbs. [1,30 kg]
SAE	E8	.1.00 lbs. [0,45 kg]
	E 12	
SA	E 16	.3.00 lbs. [1,36 kg]

Dimensions

Millimeter equivalents for inch dimensions are shown in (**)

VALVE SIZE NPT & FEMALE SAE	A	В	С
1/4"		0.88 (22.3)	0.75 (19.1)
SAE 8		1.00 (25.4)	0.88 (22.3)
1/2" & SAE 10		1.38 (35.0)	1.25 (31.7)
3/4" & SAE 12		1.75 (44.4)	1.50 (38.1)

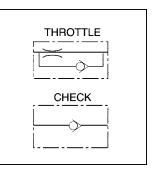
VALVE SIZE MALE TUBE	D	E	F	G
SAE 12	5.30 (134.6)	3.58 (90.9)	0.86 (21.8)	1.75 (44.4)
SAE 16	5.36 (136.1)	3.54 (89.9)	0.91 (23.1)	1.75 (44.4)

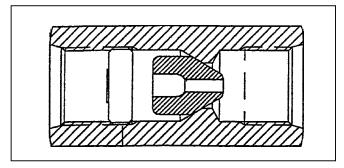
General Description

Series LT and LTF Valves will operate satisfactorily when installed in any position. These valves may be used as Line Check Valves, permitting full flow of hydraulic oil in one direction only or they may be used as restrictors.

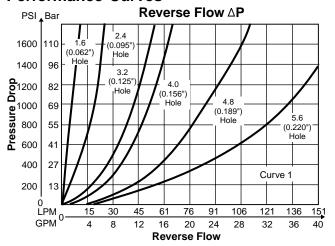
An assortment of restrictors are available. When installed, the valve becomes a Line Throttle Valve permitting free flow of hydraulic oil in one direction and a restricted flow in the opposite direction.

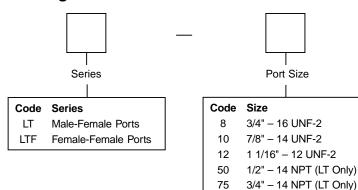
An array of color-coded poppets allows easy and quick identification.

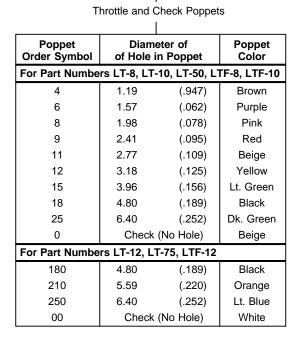

Features

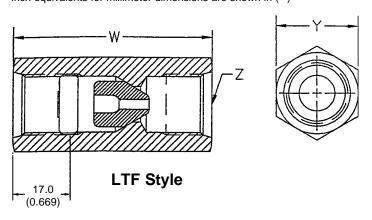

- Accurate control of double-acting cylinder by having both sides of the piston pressurized.
- For improving control of the lowering stroke of a cylinder.
- For preventing cavitation of a cylinder or motor having an inertia load.
- For metering oil flow to a hydraulic motor for proper motor speed.
- For improving control of the extend stroke of a hydraulic cylinder.
- Unidirectional.

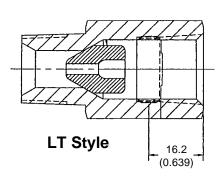
Specifications


Maximum Operating Pressure	207 Bar (3000 PSI)	
Materials	Body: Poppet: Retainer:	Steel/Zinc-plated Nylon 416 Stainless Steel
Operating Temperature	-30°C to +100°C (-22°F to +212°F)	


Performance Curves




Ordering Information



Dimensions

Inch equivalents for millimeter dimensions are shown in (**)

Model	W	Y	Z
Number	Length	Hex Size	Thread (Both Ends)
LT-50	54.1 (2.13)	25.4 (1.00)	1/2" – 14 NPT
LT-8	54.1 (2.13)	25.4 (1.00)	SAE 8 (3/4" – 16 UNF)
LT-10	58.7 (2.31)	28.7 (1.13)	SAE 10 (7/8" – 14 UNF)
LT-12	77.7 (3.06)	35.1 (1.38)	SAE 12 (1 1/16" – 12 UN)
LT-75	73.2 (2.88)	35.1 (1.38)	3/4" – 14 NPT
LTF-8	62.0 (2.44)	25.4 (1.00)	SAE 8 (3/4" – 16 UNF)
LTF-10	68.3 (2.69)	28.7 (1.13)	SAE 10 (7/8" – 14 UNF)
LTF-12	82.6 (3.25)	35.1 (1.38)	SAE 12 (1 1/16" – 12 UN)

